.
p=p1';t=t1';
[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化
net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP网络
net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01;
net.trainParam.epochs=100000; net.trainParam.goal=1e-5;
[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络
pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp);
anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew';
1、BP网络构建 (1)生成BP网络
net ? newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
PR:由R维的输入样本最小最大值构成的R?2维矩阵。
[S1 S2...SNl]:各层的神经元个数。
{TF1 TF2...TFNl}:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练
[net,tr,Y,E,Pf,Af] ? train(net,P,T,Pi,Ai,VV,TV)
(3)网络仿真
[Y,Pf,Af,E,perf]