matlab-BP神经网络的训练参数大全

 本文部分图文来自《老饼讲解-BP神经网络》www.bbbdata.com

本文列兴趣MATLAB神经网络工具箱中,训练参数trainParam的各个参数与意义

以方便在使用matlab工具箱时,用于查阅

一、matlab神经网络工具箱trainParam的参数列表

trainParam中的各个具体参数如下:

参数名称解释适用方法
net.trainParam.epochs最大训练次数(缺省为10)全部
net.trainParam.goal训练要求精度(缺省为0)全部
net.trainParam.lr学习率(缺省为0.01)全部
net.trainParam.max_fail最大失败次数(缺省为5)全部
net.trainParam.min_grad最小梯度要求(缺省为1e-10)全部
net.trainParam.show显示训练迭代过程(NaN表示不显示,缺省为25)全部
net.trainParam.time最大训练时间(缺省为inf)全部
net.trainParam.mc动量因子(缺省0.9)traingdm、traingdx
net.trainParam.lr_inc学习率lr增长比(缺省为1.05)traingda、traingdx
net.trainParam.lr_dec学习率lr下降比(缺省为0.7)traingda、traingdx
net.trainParam.max_perf_inc表现函数增加最大比(缺省为1.04)traingda、traingdx
net.trainParam.delt_inc权值变化增加量(缺省为1.2)trainrp
net.trainParam.delt_dec权值变化减小量(缺省为0.5)trainrp
net.trainParam.delt0初始权值变化(缺省为0.07)trainrp
net.trainParam.deltamax权值变化最大值(缺省为50.0)trainrp
net.trainParam.searchFcn一维线性搜索方法(缺省为srchcha)traincgf、traincgp、traincgb、trainbfg、trainoss
net.trainParam.sigma因为二次求导对权值调整的影响参数(缺省值5.0e-5)trainscg
net.trainParam.lambdaHessian矩阵不确定性调节参数(缺省为5.0e-7)trainscg
net.trainParam.men_reduc控制计算机内存/速度的参量,
内存较大设为1,否则设为2(缺省为1)
trainlm
net.trainParam.muu的初始值(缺省为0.001)trainlm
net.trainParam.mu_decu的减小率(缺省为0.1)trainlm
net.trainParam.mu_incu的增长率(缺省为10)trainlm
net.trainParam.mu_maxu的最大值(缺省为1e10)trainlm
 ✍️PASS:trainParam参数是相对训练算法而言的,因此有些参数只针对部分训练算法哦

 二、在使用trainParam时的注意事项

1.需要注意的是,有些参数只有某些方法才有效

例如mu、mu_dec等参数只有使用的trainlm方法,所以必须在了解相关算法的基础上,再进行设置。如果细心,会注意到不同训练算法的训练面板上的参数是有所不同的,如下

trainlm的训练面板

traingd的训练面板:

2.每个参数在不同训练方法上默认值有所不同

例如使用trainbr方法时,验证数据集的划分为0,同时,net.trainParam.max_fail也是为0的,如下

x = 1:100;  
y  = sin(x);
net = newff(x,y,3,{'tansig','purelin'},'trainbr');
max_fail = net.trainParam.max_fail

运行结果如下:

 更多文章



1-LVQ的学习目录:老饼|BP神经网络-竞争神经网络
2-径向基神经网络学习目录:老饼|径向基神经网络
3-BP的学习目录:老饼|BP神经网络-BP入门

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老饼讲解-BP神经网络

请老饼喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值