二维矩阵传参不会改变值_MIT 18.065—12 计算特征值和奇异值

d6f14cc474ba4067af91bcfefbb4421a.png

12. Computing Eigenvalues and Singular Values

https://www.youtube.com/watch?v=d32WV1rKoVk&list=PLUl4u3cNGP63oMNUHXqIUcrkS2PivhN3k&index=14​www.youtube.com

开始之前感谢MIT Gilbert Strang教授的这门课。

2a6d11f3741e568b25b08e44dce05b05.png

本节课主要讲述了如何计算特征值,奇异值。通过行列式的方法计算特征值只能是小于5x5的矩阵,大于5x5的矩阵就没有公式直接求解。那么如何求解呢,其中一个思路找到一个上三角矩阵相似与所求的矩阵,这样子矩阵的特征值就是对角线值。通过Schur的方法可以得到一个上三角矩阵,但是需要无穷次迭代。为了减少运算先通过householder变换得到一个Hessenburg矩阵(次对角线以下都是0),然后再经过Schur方法经过有限操作可以快速求得近似的特征值,最后我们还可以用带平移的QR分解加速Schur方法。

  1. Schur's lemma 得到上三角矩阵,特征值出现在对角线。
  2. 带有平移的QR分解。
  3. householder变换得到Hessenburg矩阵。
  4. 奇异值计算
  5. Krylov方法
  • Schur's lemma

当k趋近于无穷的时候会得到一个上三角矩阵,特征值出现在对角线上。

现在通过QR分解来计算特征值:

  1. QR分解得到
  2. ,很容易得到
  3. 继续分解
  4. 经过n步操作可以得到

经过n步的操作会发现

对角线下面的值会趋近于0变成一个上三角矩阵,且
相似所以经过这一系列操作可以求解得到矩阵
的特征值。

为什么经过上述步骤可以使

对角线下面的值收敛于0,可以简单可以解释为:

分解得到了一个orthogonal matrix 和一个上三角矩阵

通过矩阵列乘可以看到

第一列,会发现
,所以可以发现左下角的值在已经过一次迭代之后变小,经过无数次迭代之后就变成0,最终会得到一个上三角矩阵,其实只要经过有限次迭代就可以得到很近似的特征值。

这个方法迅速淘汰了所有其他用于计算特征值的方法。

  • 带有平移的QR分解
  1. QR分解得到
  2. 很容易可以证明
    相似
  3. 经过n步之后可以得到一个上三角矩阵

这样处理的好处是使得特征值收敛得更快。

引入一个平移矩阵他和原矩阵有相同的特征向量,而特征值改变s ,这样子加快收敛速度。

挖个坑具体为什么能加快收敛以及S如何取值)

Householder变换得到Hessenburg矩阵

假设我们能通过一系列操作让左下角变成0,那样子就立即知道特征值。实际上是不能的,而特征值计算对应一个一元高次方程,而高于5次的方程是没有代数解法,所以没有公式可以简单的求

。我们通过QR方法
,是尽可能逼近特征值。

既然无法通过相思变换很容易的得到上三角矩阵,但是我们可以很容易的得到Hessenburg矩阵(次对角线以下都是0)

4fd92312f42efea588ecd6ebed4d31a3.png
次对角线下都是0

Householder变换也称作镜像变换

638725aa61b557bf4819cf8321087f2d.png

可以把矩阵的第一列通过镜像到

的思路尽可能的得到0。

例子:

对A做相似变换

其中

是一3x3 Householder 矩阵。用矩阵的分块乘法可以得到:

其中

平行于

所以

计算出

得到Householder矩阵

计算得到

继续重复上述操作,

Householder 矩阵

计算得到

最终得到了Hessenburg矩阵

MATLAB计算特征值

  1. 求计算矩阵的Hessenburg矩阵
  2. 带有平移的QR分解

n次迭代或者

  • 奇异值计算

矩阵的SVD分解为

,会发现
不会改变矩阵的奇异值,因为左侧两个正交矩阵的乘积
QU依旧是正交矩阵。

可验证
QU是正交矩阵。

因此有了更多的自由空间,即

最终矩阵A可以被处理为双对角线矩阵

ebb1e318a826e060093b224d92f11c2e.png

如果直接对

处理可以得到对称的Hessenburg矩阵

b4fd985681305494bcb75c3684a80f06.png

挖个坑 计算SVD例子

  • Krylov方法

如果矩阵很大需要用Krylov方法。

1000维度的空间,他把矩阵限定在1000维度。只会在这1000维空间上看待矩阵A。如果限定在100维的Krylov空间中,这个子空间就可以捕获特征向量。向量
v表示为线性组合:

通过构造Krylov向量得到这种特定类型的子空间,通过Gram-schmidt快速获得它的基向量,考察一下矩阵在该空间中的作用,可以寻找到限于该空间的特征值。

(教授这里也只是简单的提了一下,这个学期也不会在讲Krylov方法 emmmmmmmmm)

参考文章:

特殊矩陣 (4):Householder 矩陣​ccjou.wordpress.com
9cdc8ec9f7f0eab309955049ef6a2bf8.png

下面是清华大佬写的文章。

三少爷的贱男春:MIT 18.065—机器学习中的矩阵方法13 随机矩阵乘法​zhuanlan.zhihu.com
ef548bdf6c9dd6d46a510f80920c062b.png
https://wenku.baidu.com/view/f9084956312b3169a451a4e2​wenku.baidu.com https://zh.wikipedia.org/wiki/%E8%88%92%E5%B0%94%E5%BC%95%E7%90%86​zh.wikipedia.org 利用舒爾引理證明可交換矩陣同時可三角化​ccjou.wordpress.com
397e40f7132f85c905031c089b48a1c4.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值