python分析集聚程度_水平聚集密集数据点

本文介绍了使用DBSCAN和层次聚类算法对2D numpy数组中的大量数据点进行聚类分析的过程,以提取数据的密集区域。通过调整DBSCAN的参数,尝试提取底部区域的‘b’点,但遇到困难。问题在于如何正确校准算法以准确捕捉到密集的‘b’点区域。
摘要由CSDN通过智能技术生成

我在一个2D numpy数组中有一组大约34000个数据标签,它们各自的特征(状态概率)被可视化为散点图,看起来是

UlYJG.png。在

很容易看到b点的大部分数据。我想用聚类算法来提取底部区域。我不追求完美的结果。这只是关于提取大多数b点。在

到目前为止,我已经尝试了DBSCAN算法:import sklearn.cluster as sklc

data1, data2 = zip(*dist_list[1])

data = np.array([data1, data2]).T

core_samples, labels_db = sklc.dbscan(

data, # array has to be (n_samples, n_features)

eps=2.0,

min_samples=5,

metric='euclidean',

algorithm='auto'

)

core_samples_mask = np.zeros_like(labels_db, dtype=bool)

core_samples_mask[core_samples] = True

unique_labels = set(labels_db)

n_clusters_ = len(unique_labels) - (1 if -1 in labels_db else 0)

colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_label

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值