svd奇异值分解_SVD奇异值分解逐步推导

a1af85fd3d30c6fc89a2506f75eac2de.png

1. 回顾特征值和特征向量

首先回顾下特征值和特征向量的定义:

其中,A是一个

的矩阵, x 是一个 n 维向量,则
是矩阵A的一个特征值,而 x 是矩阵A的特征值
对应的特征向量。

求出特征值和特征向量有什么好处呢?就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的n个特征值

,以及这 n 个特征值所对应的特征向量
,那么矩阵A就可以用以下的特征分解表示:

其中, W 是这 n 个特征向量所组成的

维矩阵,而
是将这 n 个特征值作为主对角线的
维矩阵。一般情况下,我们会把 W 的这 n 个特征向量标准化,即满足
,或者
,此时 W 的 n 个特征向量为标准正交基,满足
,即
,也就是说 W 为酉矩阵。这样我们的特征分解表达式可以写成:

题外延伸------矩阵压缩:

那么:

假设A为
维矩阵,如果正常表示矩阵A共需使用
个元素,如果将取得的特征值
按从大到小排序,即
,则将A的压缩表示为
,即最少只需要
个元素。

注意到要进行特征分解,矩阵A必须为方阵。

那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

2. SVD推导

Step1:矩阵分解

假如 A 为

维矩阵,则
为对称正定矩阵。
证明:1)对称性:
对称性

2)正定性:
正定性

对于矩阵A,有

,其中
为特征值,
为特征向量。假定
是一组正交基,那么有
,那么:

因此,

也是一组正交基,根据上述公式可以推导出
,从而可以得到:

根据上述公式,有

,令
,可得:

其中,

,进一步推导:

从而得出:

Step2:矩阵计算

得到矩阵A的表示后,我们应该如何计算向量 U 和 V 呢?继续往下面分析:

首先计算出A的转置

利用上式可以得到,

,只需要求出
的特征向量即可得到
.

同理可得

的值:

可以得到

,只需要求出
的特征向量即可得到
.
题外延伸-----矩阵(图像)压缩:
一个
的矩阵A经SVD分解后,可以写成如下形式:

假设A为
维矩阵,在没有压缩时表示矩阵A共需要
个元素。如果将取得的特征值按从大到小排序,即
,则A的压缩最小压缩表示为
,即需要
个元素。 当压缩储存量为
时,误差为

例题讲解

我们举一个简单的例子讲解矩阵时如何进行奇异值分解的。定义矩阵A为:

首先求出

进而求出

的特征值和特征向量:

接着求出 AA^T 的特征值和特征向量:

利用

求奇异值:

也可以用

直接求出奇异值为
.

最终得到矩阵A的奇异值分解为:

SVD的一些性质

对于奇异值,他跟我们特征分解中的特征值类似,在奇艺置矩阵中也是按照从大到小排列,而且奇异值的减少特别快,在很多情况下,前10%甚至1%的奇异值就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个奇异值和对应的左右奇异向量来近似描述矩阵(与前面描述的题外延伸之矩阵压缩类似),由于这个重要的性质,SVD也可以用于PCA降维,来做数据压缩和去噪,也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需要来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。

参考:1. https:// zhuanlan.zhihu.com/p/29 846048
参考:2. https://www. csuldw.com/2017/03/09/2 017-03-09-svd/
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值