mysql 不等于 优化_MySQL通过索引优化这里可能有你不知道的索引优化细节(一)...

我在 MySQL优化必备之执行计划explain,索引基本知识,索引数据结构推演 里,提到了索引的一些基本概念,提到MySQL优化,很多人第一时间会想到建索引。

那么MySQL有哪些索引类型?通过索引优化,具体该怎么做,有哪些细节?

哈希索引

在MySQL中,只有memory的存储引擎显式支持哈希索引。

哈希索引是基于哈希表的实现,只有精确匹配索引所有列的查询才有效。

哈希索引自身只需存储对应的hash值,所以索引的结构十分紧凑,这让哈希索引查找的速度非常快。

哈希索引的限制

  • 哈希索引只包含哈希值行指针,而不存储字段值,所以不能使用索引中的值来避免读取行
  • 哈希索引数据并不是按照索引值顺序存储的,所以无法进行排序
  • 哈希索引不支持部分列匹配查找,哈希索引是使用索引列的全部内容来计算哈希值
  • 它们仅用于使用=<=>运算符的相等比较(但非常快)。它们不用于比较运算符(例如<)来查找值的范围。
  • 访问哈希索引的数据非常快,除非有很多哈希冲突,当出现哈希冲突的时候,存储引擎必须遍历链表中的所有行指针,逐行进行比较,直到找到所有符合条件的行

哈希(Hash)一般叫做散列,意思就是把一堆任意长度的字符串、数字或者二进制输入通过一定的算法(非常多的哈希算法)生成固定长度的一个数字(字符串)。因为算法原因,不同的输入就会得到不同的哈希值。

哈希表(Hash Table)一般叫做散列表,就是通过把键值计算出Hash值后,通过Hash值映射到表里面的某个位置。那么同样的键值,下次访问或者修改都是同一个映射位置,不同的键值因为计算出Hash值不一样映射的位置也会不同。

因为哈希值是通过一定算法生成的,那么就有一定的可能出现不同的输入得到的Hash值是一样的,就算我们可以通过调整算法尽量减少这种情况,但是也不可完全避免。发生这种情况后,我们就会出现两个不同的键值被映射到同一个位置了,这就是哈希冲突

  • 哈希冲突比较多的话,维护的代价也会很高

哈希索引使用案例

当需要存储大量的URL,并且根据URL进行搜索查找,如果使用B+树,存储的内容就会很大(比如URL超长的情况):

select id from url where url=''

也可以利用将url使用CRC32做哈希,可以使用以下查询方式:

select id fom url where url='' and url_crc=CRC32('')

此查询性能较高原因是使用体积很小的索引来完成查找

组合索引

当包含多个列作为索引,需要注意的是正确的顺序依赖于该索引的查询,同时需要考虑如何更好的满足排序和分组的需要。

假设有个表建了索引(a, b, c),那么不同SQL语句使用索引的情况如下:

查询条件组合索引是否发挥作用
where a=3是,只使用了a
where a=3 and b=5是,使用了a,b
where a=3 and b=5 and c=6是,使用了a,b,c
where a=3 and b=5是,使用了a,b
==where b=3 or c=5====否==
where a=3 and c=6是,只使用了a
where a=3 and b<10 and c=7是,使用了a,b
where a=3 and b like '%xxoo%' and c=7是,只是用了a

组合索引使用案例

建表:

create table staffs(
    id int primary key auto_increment,
    name varchar(24) not null default '' comment '姓名',
    age int not null default 0 comment '年龄',
    pos varchar(20) not null default '' comment '职位',
    add_time timestamp not null default current_timestamp comment '入职时间'
) charset utf8 comment '员工记录表';

建一个组合索引:

alter table staffs add index idx_nap(name, age, pos);
  • 使用name,age,pos三个字段做查询条件,并且顺序按照组合索引顺序:
mysql> explain select * from staffs where name='zhangsan' and age=18 and pos='programmer'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: staffs
   partitions: NULL
         type: ref
possible_keys: idx_nap
          key: idx_nap
      key_len: 140
          ref: const,const,const
         rows: 1
     filtered: 100.00
        Extra: NULL
1 row in set, 1 warning (0.01 sec)

该查询用到了索引idx_naptyperef,并且ref为const,const,const。这种是最理想的条件。

  • 使用name,age,pos三个字段做查询条件,并且顺序按照组合索引顺序,但是age使用了范围查询:
mysql> explain select * from staffs where name='zhangsan' and age>18 and pos='programmer'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: staffs
   partitions: NULL
         type: range
possible_keys: idx_nap
          key: idx_nap
      key_len: 78
          ref: NULL
         rows: 1
     filtered: 100.00
        Extra: Using index condition
1 row in set, 1 warning (0.01 sec)

该查询的也用到了索引idx_nap,但typerange,我们知道range的查询效率要低于ref的。原因是该查询只用到了nameage两个索引,组合索引的pos字段没有用上。

  • 查询条件只用到组合索引的后两个字段
mysql> explain select * from staffs where age=18 and pos='programmer'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: staffs
   partitions: NULL
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1
     filtered: 100.00
        Extra: Using where
1 row in set, 1 warning (0.00 sec)

这个type就是ALL了,这种情况索引是失效的,没有用到索引,效率是最低的。

聚簇索引与非聚簇索引

聚簇索引

不是单独的索引类型,而是一种数据存储方式,指的是数据行跟相邻的键值紧凑的存储在一起。

InnoDB的存储方式就是聚簇索引,索引和值放在同一个文件,.ibd文件。

聚簇索引的优点

  • 可以把相关数据保存在一起
  • 数据访问更快,因为索引和数据保存在同一个树中
  • 使用覆盖索引扫描的查询可以直接使用叶子节点中的主键值

聚簇索引的缺点

  • 聚簇数据最大限度地提高了IO密集型应用的性能,如果数据全部在内存,那么聚簇索引就没有什么优势
  • 插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式
  • 更新聚簇索引列的代价很高,因为会强制将每个被更新的行移动到新的位置
  • 基于聚簇索引的表在插入新行,或者主键被更新导致需要移动行的时候,可能面临页分裂的问题
  • 聚簇索引可能导致全表扫描变慢,尤其是行比较稀疏,或者由于页分裂导致数据存储不连续的时候

非聚簇索引

数据文件和索引文件分开存放,MyIsam存储引擎就是如此。

覆盖索引

如果一个索引包含所有需要查询的字段的值,我们称之为覆盖索引,比如这个:

select name,age,pos from staffs where name='zhangsan' and age=18 and pos='programmer';

不是所有类型的索引都可以称为覆盖索引,覆盖索引必须要存储索引列的值。

不同的存储实现覆盖索引的方式不同,不是所有的引擎都支持覆盖索引,memory不支持覆盖索引。

覆盖索引有哪些好处

  • 索引条目通常远小于数据行大小,如果只需要读取索引,那么MySQL就会极大的减少数据访问量
  • 因为索引是按照列值顺序存储的,所以对于IO密集型的范围查询会比随机从磁盘读取每一行数据的IO要少的多
  • 一些存储引擎如MYISAM在内存中只缓存索引,数据则依赖于操作系统来缓存,因此要访问数据需要一次系统调用,这可能会导致严重的性能问题
  • 由于INNODB的聚簇索引,覆盖索引对INNODB表特别有用

案例

MySQL官网上很贴心的给出了一些示例,并且很贴心的建了一些表供我们使用,我很感动的说!!!

比如MySQL提供的sakila数据库:

2c4da1d138567ec492797beae096b1c5.png

我们可以从这里获取:

7402e5065a259c1b7f6af91410fe2df6.png
b84b5b5dec84e0edfed97e2963d97b48.png

下载下来之后我们导入本地进行测试:

mysql> source /root/soft/sakila-schema.sql
mysql> source /root/soft/sakila-data.sql

好了,可以愉快地使用这些表了。

  1. 当发起一个被索引覆盖的查询时,在explainextra列可以看到using index的信息,此时就使用了覆盖索引
mysql> explain select store_id,film_id from inventory\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: inventory
   partitions: NULL
         type: index
possible_keys: NULL
          key: idx_store_id_film_id
      key_len: 3
          ref: NULL
         rows: 4581
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)
  1. 在大多数存储引擎中,覆盖索引只能覆盖那些只访问索引中部分列的查询。不过,可以进一步的进行优化,可以使用innodb的二级索引来覆盖查询

例如actor表:

mysql> desc actor;
+-------------+----------------------+------+-----+-------------------+-----------------------------+
| Field       | Type                 | Null | Key | Default           | Extra                       |
+-------------+----------------------+------+-----+-------------------+-----------------------------+
| actor_id    | smallint(5) unsigned | NO   | PRI | NULL              | auto_increment              |
| first_name  | varchar(45)          | NO   |     | NULL              |                             |
| last_name   | varchar(45)          | NO   | MUL | NULL              |                             |
| last_update | timestamp            | NO   |     | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP |
+-------------+----------------------+------+-----+-------------------+-----------------------------+
4 rows in set (0.00 sec)

actor使用innodb存储引擎,并在last_name字段有二级索引,虽然该索引的列不包括主键actor_id,但也能够用于对actor_id做覆盖查询

mysql> explain select actor_id,last_name from actor where last_name='HOPPER'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: actor
   partitions: NULL
         type: ref
possible_keys: idx_actor_last_name
          key: idx_actor_last_name
      key_len: 182
          ref: const
         rows: 2
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)

通过索引优化的一些细节

「1. 当使用索引列进行查询的时候尽量不要使用表达式,把计算放到业务层而不是数据库层」

看一个案例:

mysql> select actor_id from actor where actor_id=4;
+----------+
| actor_id |
+----------+
|        4 |
+----------+
1 row in set (0.00 sec)

mysql> select actor_id from actor where actor_id+1=5;
+----------+
| actor_id |
+----------+
|        4 |
+----------+
1 row in set (0.02 sec)

第一条语句和第二条语句查询结果是一样的,但是执行效率是有差别的:

mysql> explain select actor_id from actor where actor_id=4;
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type  | possible_keys | key     | key_len | ref   | rows | filtered | Extra       |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------------+
|  1 | SIMPLE      | actor | NULL       | const | PRIMARY       | PRIMARY | 2       | const |    1 |   100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> explain select actor_id from actor where actor_id+1=4;
+----+-------------+-------+------------+-------+---------------+---------------------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key                 | key_len | ref  | rows | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+---------------------+---------+------+------+----------+--------------------------+
|  1 | SIMPLE      | actor | NULL       | index | NULL          | idx_actor_last_name | 182     | NULL |  200 |   100.00 | Using where; Using index |
+----+-------------+-------+------------+-------+---------------+---------------------+---------+------+------+----------+--------------------------+
1 row in set, 1 warning (0.02 sec)

第一个typeconst效率高于第二条语句index

「2. 尽量使用主键查询,而不是其他索引,因为主键查询不会触发回表查询」

关于回表,欢迎查看MySQL优化必备之执行计划explain,索引基本知识,索引数据结构推演 中提到的索引基本知识。

「3. 使用前缀索引」

有时候需要索引很长的字符串,这会让索引变的大且慢,通常情况下可以使用某个列开始的部分字符串,这样大大的节约索引空间,从而提高索引效率。

但这会降低索引的选择性,「索引的选择性是指不重复的索引值和数据表记录总数的比值」,范围从1/#T到1之间。

索引的选择性越高则查询效率越高,因为选择性更高的索引可以让MySQL在查找的时候过滤掉更多的行。

一般情况下某个列前缀的选择性也是足够高的,足以满足查询的性能,但是对应BLOB,TEXT,VARCHAR类型的列,必须要使用前缀索引,因为MySQL不允许索引这些列的完整长度,使用该方法的诀窍在于要选择足够长的前缀以保证较高的选择性,通过又不能太长。

我们来构造一些数据表和数据:

mysql> create table citydemo(city varchar(50) not null);
Query OK, 0 rows affected (0.04 sec)

mysql> insert into citydemo(city) select city from city;
Query OK, 600 rows affected (0.03 sec)
Records: 600  Duplicates: 0  Warnings: 0

mysql> insert into citydemo(city) select city from citydemo;
Query OK, 600 rows affected (0.03 sec)
Records: 600  Duplicates: 0  Warnings: 0

mysql> insert into citydemo(city) select city from citydemo;
Query OK, 1200 rows affected (0.01 sec)
Records: 1200  Duplicates: 0  Warnings: 0

mysql> insert into citydemo(city) select city from citydemo;
Query OK, 2400 rows affected (0.05 sec)
Records: 2400  Duplicates: 0  Warnings: 0

mysql> insert into citydemo(city) select city from citydemo;
\Query OK, 4800 rows affected (0.09 sec)
Records: 4800  Duplicates: 0  Warnings: 0

mysql> insert into citydemo(city) select city from citydemo;
Query OK, 9600 rows affected (0.16 sec)
Records: 9600  Duplicates: 0  Warnings: 0

如此,我们构造了一些重复数据。

查找最常见的城市列表:

mysql> select count(*) as cnt,city from citydemo group by city order by cnt desc limit 10;
+-----+------------------+
| cnt | city             |
+-----+------------------+
|  64 | London           |
|  32 | Omiya            |
|  32 | Pontianak        |
|  32 | Antofagasta      |
|  32 | Salala           |
|  32 | Batna            |
|  32 | Shubra al-Khayma |
|  32 | Brescia          |
|  32 | Sunnyvale        |
|  32 | Clarksville      |
+-----+------------------+
10 rows in set (0.04 sec)

发现每个值都出现了32+次,我们来查找最频繁出现的城市前缀,先从3个前缀字母开始:

mysql> select count(*) as cnt,left(city,3) as pref from citydemo group by pref order by cnt desc limit 10;
+-----+------+
| cnt | pref |
+-----+------+
| 448 | San  |
| 192 | Cha  |
| 160 | Sal  |
| 160 | Tan  |
| 160 | Sou  |
| 160 | al-  |
| 128 | Hal  |
| 128 | Bat  |
| 128 | Man  |
| 128 | Sha  |
+-----+------+

可以看到用left(city,3)截取前三个作为前缀查询的结果和之前整列查找差别比较大,继续增加截取的字符数查询,这次用left(city, 5)

mysql> select count(*) as cnt,left(city,5) as pref from citydemo group by pref order by cnt desc limit 10;
+-----+-------+
| cnt | pref  |
+-----+-------+
| 128 | South |
|  96 | Santa |
|  64 | Chang |
|  64 | Toulo |
|  64 | Santi |
|  64 | Xiang |
|  64 | Valle |
|  64 | Londo |
|  64 | Saint |
|  64 | San F |
+-----+-------+

如你所见,差别变小了,以此法继续,最后确定left(city, 7)和最终的结果最接近:

mysql> select count(*) as cnt,left(city,7) as pref from citydemo group by pref order by cnt desc limit 10;
+-----+---------+
| cnt | pref    |
+-----+---------+
|  64 | Valle d |
|  64 | Santiag |
|  64 | London  |
|  64 | San Fel |
|  32 | Antofag |
|  32 | Batna   |
|  32 | Brescia |
|  32 | Clarksv |
|  32 | El Mont |
|  32 | Greensb |
+-----+---------+

也就是说,此时前缀的选择性接近于完整列的选择性。

前面说索引的选择性是指不重复的索引值和数据表记录总数的比值,那么计算完整列的选择性,还可以用如下方法:

select count(distinct left(city,3))/count(*) as sel3,
count(distinct left(city,4))/count(*) as sel4,
count(distinct left(city,5))/count(*) as sel5,
count(distinct left(city,6))/count(*) as sel6,
count(distinct left(city,7))/count(*) as sel7,
count(distinct left(city,8))/count(*) as sel8 
from citydemo;

结果:

1153e6b9a50d916be47205e3d48918c0.png

至此,我们就可以愉快的建立前缀索引了:

alter table citydemo add key(city(7));

用一下瞅瞅:

7379b12e975a6210231d836e357b65f4.png

typeref级别的,效率还是很好的!

注意:前缀索引是一种能使索引更小更快的有效方法,但是也包含缺点:MySQL无法使用前缀索引做order by 和 group by。

「4. 使用索引扫描来排序」

MySQL有两种方式可以生成有序的结果:通过排序操作或者按索引顺序扫描,如果explain出来的type列的值为index,则说明MySQL使用了索引扫描来做排序。

扫描索引本身是很快的,因为只需要从一条索引记录移动到紧接着的下一条记录。但如果索引不能覆盖查询所需的全部列,那么就不得不每扫描一条索引记录就得回表查询一次对应的行,这基本都是随机IO,因此按索引顺序读取数据的速度通常要比顺序的全表扫描慢。

MySQL可以使用同一个索引即满足排序,又用于查找行,如果可能的话,设计索引时应该尽可能地同时满足这两种任务。

只有当索引的列顺序和order by子句的顺序完全一致,并且所有列的排序方式都一样时,MySQL才能够使用索引来对结果进行排序,如果查询需要关联多张表,则只有当order by子句引用的字段全部为第一张表时,才能使用索引做排序。order by子句和查找型查询的限制是一样的,需要满足索引的最左前缀的要求,否则,MySQL都需要执行顺序操作,而无法利用索引排序。

f3a2cc21ade016b6fd30941d6a5a25e3.png

sakila数据库中rental表在rental_date,inventory_id,customer_id上有名称为rental_date的组合索引:

187d52baf07006195cbe80da13fb5a82.png

eg.1

mysql> explain select rental_id,staff_id from rental where rental_date='2005-05-25' order by inventory_id,customer_id\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: rental
   partitions: NULL
         type: ref
possible_keys: rental_date
          key: rental_date
      key_len: 5
          ref: const
         rows: 1
     filtered: 100.00
        Extra: Using index condition
1 row in set, 1 warning (0.03 sec)

此处order by子句不满足索引的最左前缀的要求,也可以用于查询排序,这是因为查询的第一列rental_date='2005-05-25'被指定为一个常数。

eg. 2

mysql> explain select rental_id,staff_id from rental where rental_date='2005-05-25' order by inventory_id desc\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: rental
   partitions: NULL
         type: ref
possible_keys: rental_date
          key: rental_date
      key_len: 5
          ref: const
         rows: 1
     filtered: 100.00
        Extra: Using where
1 row in set, 1 warning (0.03 sec)

该查询为索引的第一列提供了常量条件,而使用第二列进行排序,将两个列组合在一起,就形成了索引的最左前缀(顺序为rental_date,inventory_id)

eg.3

mysql> explain select rental_id,staff_id from rental where rental_date>'2005-05-25' order by rental_date,inventory_id\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: rental
   partitions: NULL
         type: ALL
possible_keys: rental_date
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 16005
     filtered: 50.00
        Extra: Using where; Using filesort
1 row in set, 1 warning (0.00 sec)

该查询第一列用的是范围查询,根据前面的铺垫,后面无论顺序如何,都不会按照索引进行排序了。从运行结果也能看到,该查询没有利用索引(Using filesort)。

eg. 4

mysql> explain select rental_id,staff_id from rental where rental_date='2005-05-25' order by inventory_id desc,customer_id asc\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: rental
   partitions: NULL
         type: ref
possible_keys: rental_date
          key: rental_date
      key_len: 5
          ref: const
         rows: 1
     filtered: 100.00
        Extra: Using index condition; Using filesort
1 row in set, 1 warning (0.00 sec)

该查询使用了两种不同的排序方向(先desc,后asc),但是索引列都是正序排序的,从结果看(Using filesort),也没有利用索引进行排序。

eg. 5

mysql> explain select rental_id,staff_id from rental where rental_date='2005-05-25' order by inventory_id desc,customer_id desc\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: rental
   partitions: NULL
         type: ref
possible_keys: rental_date
          key: rental_date
      key_len: 5
          ref: const
         rows: 1
     filtered: 100.00
        Extra: Using where
1 row in set, 1 warning (0.00 sec)

这个就用到了索引排序。

结合eg. 4,为什么按照两个方向(先desc,后asc)进行排序不利用索引,而同一方向就用了呢?

答:建立索引的时候默认是按照升序存储的,在B+树上,从上往下查找,如果都是desc,反过来从下往上查找即可。但是你同时整了两个方向的查找,B+树上,在一个节点里面还怎么对它进行排序,怎么直接读取索引里面的值?不能了吧。

db8cb27f222ce337723c23dec218f96c.png

熬夜不易,欢迎关注转发、点赞、在看,给个鼓励,谢谢大伙!

也欢迎多踩踩我的博客:https://blog.csdn.net/hundred_li_journey

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值