pandas 根据列名索引多列数据_数据分析——学会用pandas做多层索引

本文介绍了如何使用Pandas创建多层索引的Series和DataFrame,包括隐式和显式方法,如MultiIndex.from_product()、set_index()、groupby()和pivot_table()。接着详细阐述了多层索引的取值方法,如直接提取、loc[]和iloc[]。最后讨论了如何对多层索引进行排序,包括sort_index()和sort_values()。内容适用于处理高维数据和复杂逻辑的情况。
摘要由CSDN通过智能技术生成

【导语】Pandas库的名字来源于3种主要数据结构开头字母的缩写:Panel,Dataframe,Series。其中Series表示一维数据,Dataframe表示二维数据,Panel表示三维数据。当数据高于二维时,一般却不用 Panel 表示,为什么呢?如果不用 Panel,又该怎么做呢?

实际上,当数据高于二维时,我们一般用包含多层级索引的Dataframe进行表示,而不是使用Panel。原因是使用多层级索引展示数据更加直观,操作数据更加灵活,并且可以表示3维,4维乃至任意维度的数据。具体要怎么做呢?下面就从多层级索引的创建、取值与排序等内容教大家一些方法!

一、多层索引的创建

1、(隐式)Series创建索引

直接使⽤index参数创建 在使⽤index参数时,index的值是⼀个列表,其中的元素是多个列表,每个列表就是⼀层索 引,举个栗⼦:

import pandas as pd

# 创建Series索引

s = pd.Series(np.random.randint(0,150,size=6),index=[['a','a','b','b','c','c'],['期中','期末','期中','期末','期中','期末']])

s

我们来看⼀下输出结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值