【导语】Pandas库的名字来源于3种主要数据结构开头字母的缩写:Panel,Dataframe,Series。其中Series表示一维数据,Dataframe表示二维数据,Panel表示三维数据。当数据高于二维时,一般却不用 Panel 表示,为什么呢?如果不用 Panel,又该怎么做呢?
实际上,当数据高于二维时,我们一般用包含多层级索引的Dataframe进行表示,而不是使用Panel。原因是使用多层级索引展示数据更加直观,操作数据更加灵活,并且可以表示3维,4维乃至任意维度的数据。具体要怎么做呢?下面就从多层级索引的创建、取值与排序等内容教大家一些方法!
一、多层索引的创建
1、(隐式)Series创建索引
直接使⽤index参数创建 在使⽤index参数时,index的值是⼀个列表,其中的元素是多个列表,每个列表就是⼀层索 引,举个栗⼦:
import pandas as pd
# 创建Series索引
s = pd.Series(np.random.randint(0,150,size=6),index=[['a','a','b','b','c','c'],['期中','期末','期中','期末','期中','期末']])
s
我们来看⼀下输出结