一、题目描述
有效括号字符串 定义:对于每个左括号,都能找到与之对应的右括号,反之亦然。详情参见题末「有效括号字符串」部分。
嵌套深度 depth 定义:即有效括号字符串嵌套的层数,depth(A) 表示有效括号字符串 A 的嵌套深度。详情参见题末「嵌套深度」部分。
有效括号字符串类型与对应的嵌套深度计算方法如下图所示:

给你一个「有效括号字符串」seq,请你将其分成两个不相交的有效括号字符串,A和 B,并使这两个字符串的深度最小。
(1) 不相交:每个 seq[i] 只能分给 A 和 B 二者中的一个,不能既属于 A 也属于 B 。
(2) A 或 B 中的元素在原字符串中可以不连续。
(3) A.length + B.length = seq.length
(4) 深度最小:max(depth(A), depth(B)) 的可能取值最小。 划分方案用一个长度为 seq.length 的答案数组 answer 表示,编码规则如下:
answer[i] = 0,seq[i] 分给 A 。
answer[i] = 1,seq[i] 分给 B 。如果存在多个满足要求的答案,只需返回其中任意 一个 即可。
示例 1:
输入:seq = "(()())"
输出:[0,1,1,1,1,0]
示例 2:
输入:seq = "()(())()"
输出:[0,0,0,1,1,0,1,1]
解释:本示例答案不唯一。
按此输出 A = "()()", B = "()()", max(depth(A), depth(B)) = 1,它们的深度最小。
像 [1,1,1,0,0,1,1,1],也是正确结果,其中 A = "()()()", B = "()", max(depth(A), depth(B)) = 1 。
提示:
1 < seq.size <= 10000
有效括号字符串:
仅由 "(" 和 ")" 构成的字符串,对于每个左括号,都能找到与之对应的右括号,反之亦然。
下述几种情况同样属于有效括号字符串:
1. 空字符串
2. 连接,可以记作 AB(A 与 B 连接),其中 A 和 B 都是有效括号字符串
3. 嵌套,可以记作 (A),其中 A 是有效括号字符串
嵌套深度:
类似地,我们可以定义任意有效括号字符串 s 的 嵌套深度 depth(S):
1. s 为空时,depth("") = 0
2. s 为 A 与 B 连接时,depth(A + B) = max(depth(A), depth(B)),其中 A 和 B 都是有效括号字符串
3. s 为嵌套情况,depth("(" + A + ")") = 1 + depth(A),其中 A 是有效括号字符串
例如:"","()()",和 "()(()())" 都是有效括号字符串,嵌套深度分别为 0,1,2,而 ")(" 和 "(()" 都不是有效括号字符串。二、解题思路
时间复杂度
思路分析:
(1) 根据 depth(A + B) = max(depth(A), depth(B)) 这个定义,整体的「嵌套深度」取决于子序列的「嵌套深度」的最大者;
(2) 要使得 max(depth(A), depth(B)) 的可能取值最小,分析示例的时候提到,这很像一棵二叉树,要使得二叉树的深度最小,那么就需要该二叉树平衡,一个可行的做法是:把栈中连续出现的左括号,根据奇偶性分到不同的组,右括号随与之匹配左括号的组号;
(3) 如果出现 () 这种子序列,即左括号后面连着出现了右括号,其实分在那一组都是没有关系的,因为它的存在不会使得「嵌套深度」更深。


三、C++代码
class Solution {
public:
vector<int> maxDepthAfterSplit(string seq) {
vector<int> ret;
int depth = 0;
for(int i = 0; i < seq.size(); ++i) {
if(seq[i] == '(') {
depth++;
ret.emplace_back(depth % 2);
} else {
ret.emplace_back(depth % 2);
depth--;
}
}
return ret;
}
};
本文介绍了一种算法,用于将有效括号字符串划分为两个子串A和B,以确保两者的嵌套深度尽可能小。通过一种特殊的编码方式,将左括号按奇偶性分配到不同组,并跟随匹配的右括号进行分组。
1661

被折叠的 条评论
为什么被折叠?



