一起学习,一起成长
对于大多数情况而言,fillna方法是最主要的函数。通过一个常数调用fillna就会将缺失值替换为那个常数值。
fillna(value)
参数:value
说明:用于填充缺失值的标量值或字典对象
#通过常数调用fillna
书写方式:df.fillna(0) #用0替换缺失值
#通过字典调用fillna
书写方式:df.fillna({1:0.5,3:-1})
fillna(value,inplace=True)
参数:inplace
说明:修改调用者对象而不产生副本
#总是返回被填充对象的引用
书写方式:df.fillna(0,inplace=True)
fillna(method=ffill)
参数:method
说明:插值方式。如果函数调用时未指定其他参数的话,默认为“ffill”
对reindex有效的那些插值方法也可用于fillna:
In [23]: from numpy import nan as NA
In [21]: df=DataFrame(np.random.randn(6,3))
In [24]: df.ix[2:,1]=NA;df.ix[4:,2]=NA
In [25]: df
Out[25]:
0 1 2
0 -0.863925 1.005127 -0.529901
1 0.701671 -0.501728 -