sklearn adaboost_会员数据化运营-基于AdaBoost的营销响应预测

v2-fc6f2d663c6ab3cdfdc3b56d0ce41ad4_1440w.jpg?source=172ae18b

一、背景

介绍有关会员营销预测的实际应用。会员部门造作会员营销时,希望通过数据预测在下一次营销活动时,响应活动会员的具体名单和响应率,一次制定针对性的营销策略。

本预测模型可用于业务部门周期性自动执行,结合现有的辅助决策平台筛选会员数据,满足营销需要。

二、涉及技术

数据预处理:二值化标志转化OneHotEncoder、基于方差分析的特征选择的数据降维SelectPercentile结合f_classif。

数据建模:管道方法Pipe、交叉验证cross_val_score配合StratifiedKFold和自定义得分计算方法、集成分类算法AdaBosstClassifier。

数据库:time、Numpy、Pandas和Sklearn,其中Sklearn是数据建模的核心。

重点:利用管道方法将多个数据处理的环节结合起来,形成处理管道,然后针对该对象做交叉验证并得到不同参数下检验效果,辅助于参数设置。

三、数据特征

数据来源:

链接:

https://pan.baidu.com/s/1e_HtRASWeVL3pqrFu6N3Zw​pan.baidu.com

提取码:b1sp

orde.xlsx,包括2个sheet:sheet1为本次案例的训练集,sheet2为本次案例的预测集。以下是数据概况:

  • 特征变量数:13。
  • 数据记录数:sheet1中的训练集数据记录数为39999,sheet2中的预 测集数据记录数为8843。
  • 是否有NA值:有。
  • 是否有异常值:无。

以下是本数据集的13个特征变量,包括:

  • age:年龄,整数型变量。
  • total_pageviews:总页面浏览量,整数型变量。
  • edu:教育程度,分类型变量,值域[1,10]。
  • edu_ages:受教育年限,整数型变量。
  • user_level:用户等级,分类型变量,值域[1,7]。
  • industry:用户行业划分,分类型变量,值域[1,15]。
  • value_level:用户价值度分类,分类型变量,值域[1,6]。
  • act_level:用户活跃度分类,分类型变量,值域[1,5]。
  • sex:性别,值域为1或0。
  • blue_money:历史订单的蓝券用券订单金额(优惠券的一种), 整数型变量。
  • red_money:历史订单的红券用券订单金额(优惠券的一种),整 数型变量。
  • work_hours:工作时间长度,整数型变量。
  • region:地区,分类型变量,值域[1,41]。

目标变量response,1代表用户有响应,0代表用户未响应。

四、案例分析

# 描述:案例-基于AdaBoost的营销响应预测

导入库

import time

import numpy as np
import pandas as pd
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.ensemble import AdaBoostClassifier, ExtraTreesClassifier
from sklearn.feature_selection import RFE
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.pipeline import Pipeline, FeatureUnion

StratifiedKFold,cross_val_score:用来做交叉检验,前者用来将数据分为训练集和测试集;后者用来交叉检验。这里选择的 StratifiedKFold能够有效结合分类样本标签做数据集分割,而不是完全的随机选择和分割。这种方式在应对分类样本不均衡时尤为有效。

Linear Discriminant Analysis:线性判别分析(LDA)是一种用来实现两个或者多个对象特征分类方法。

SelectPercentile,f_classif:前者用来做特征选择的数量控制,后者 用来确定特征选择的得分计算标准。

AdaBoostClassifier是集成算法,用来做分类模型训练。

Recursive feature elimination(RFE):RFE递归特征消除的主要思想是反复构建模型,然后选出最好的(或者最差的)特征(根据系数来选),把选出来的特征放到一边,然后在剩余的特征上重复这个过程,直到遍历了所有的特征。在这个过程中被消除的次序就是特征的排序。

Pipeline:是一个“管道”,目的是将不同的环节结合起来应用,这 常用于多个流程和环节的反复性操作。例如本案例中,将特征选择和集 成算法结合起来形成一个“管道”对象,然后针对该对象训练不同参数下 对应交叉检验的结果。

FeatureUnion:把若干个transformer object组合成一个新的estimators。这个新的transformer组合了他们的输出,一个FeatureUnion对象接受一个transformer对象列表。

accuracy_score:准确率评估指标,用于分类算法。

1、基本状态查看

# 基本状态查看
def set_summary(df):
    '''
    查看数据集的记录数、维度数、前2条数据、描述性统计和数据类型
    :param df: 数据框
    :return: 无
    '''
    print('Data Overview')
    print('Records: {0}tDimension{1}'.format(df.shape[0], (df.shape[1] - 1)))  # 打印数据集X形状
    print('-' * 30)
    print(df.head(2))  # 打印前2条数据
    print('-' * 30)
    print('Data DESC')
    print(df.describe())  # 打印数据基本描述性信息
    print('Data Dtypes')
    print(df.dtypes)  # 打印数据类型
    print('-' * 60)

打印返回值:

Data Overview
Records: 39999	Dimension113
------------------------------
    age  total_pageviews  edu  ...  label_99  label_100  response
0  39.0          77516.0  1.0  ...         0          1         0
1  50.0          83311.0  1.0  ...         0          1         0
2  38.0         215646.0  2.0  ...         0          1         0
3  53.0         234721.0  2.0  ...         0          0         0
4  28.0         338409.0  1.0  ...         0          1         0

[5 rows x 114 columns]
------------------------------
Data DESC
                age  total_pageviews  ...     label_100      response
count  39998.000000     3.999800e+04  ...  39999.000000  39999.000000
mean      38.589654     1.895136e+05  ...      0.495212      0.239606
std       13.663490     1.053109e+05  ...      0.499983      0.426848
min       17.000000     1.228500e+04  ...      0.000000      0.000000
25%       28.000000     1.175282e+05  ...      0.000000      0.000000
50%       37.000000     1.783410e+05  ...      0.000000      0.000000
75%       48.000000     2.372685e+05  ...      1.000000      0.000000
max       90.000000     1.484705e+06  ...      1.000000      1.000000

[8 rows x 114 columns]
Data Dtypes
age                float64
total_pageviews    float64
edu                float64
edu_ages           float64
user_level         float64
industry           float64
value_level          int64
act_level          float64
sex                float64
blue_money           int64
red_money          float64
work_hours           int64
region             float64
label_1              int64
label_2              int64
label_3              int64
label_4              int64
label_5              int64
label_6              int64
label_7              int64
label_8              int64
label_9              int64
label_10             int64
label_11             int64
label_12             int64
label_13             int64
label_14             int64
label_15             int64
label_16             int64
label_17             int64
                    ...   
label_72             int64
label_73             int64
label_74             int64
label_75             int64
label_76             int64
label_77             int64
label_78             int64
label_79             int64
label_80             int64
label_81             int64
label_82             int64
label_83             int64
label_84             int64
label_85             int64
label_86             int64
label_87             int64
label_88             int64
label_89             int64
label_90             int64
label_91             int64
label_92             int64
label_93             int64
label_94             int64
label_95             int64
label_96             int64
label_97             int64
label_98             int64
label_99             int64
label_100            int64
response             int64
Length: 114, dtype: object
------------------------------------------------------------

2、缺失值查看

# 缺失值审查
def na_summary(df):
    '''
    查看数据集的缺失数据列、行记录数
    :param df: 数据框
    :return: 无
    '''
    na_cols = df.isnull().any(axis=0)  # 每一列是否具有缺失值
    print('NA Cols:')
    print(na_cols)  # 查看具有缺失值的列
    print('-' * 30)
    print('valid records for each Cols:')
    print(df.count())  # 查看每一列有效值(非NA)的记录数
    print('-' * 30)
    print('Total number of NA lines is: {0}'.format(df.isnull().any(axis=1).sum()))  # 查看具有缺失值的行总记录数
    print('-' * 30)

打印返回值:

NA Cols:
age                 True
total_pageviews     True
edu                 True
edu_ages            True
user_level          True
industry            True
value_level        False
act_level           True
sex                 True
blue_money         False
red_money           True
work_hours         False
region              True
label_1            False
label_2            False
label_3            False
label_4            False
label_5            False
label_6            False
label_7            False
label_8            False
label_9            False
label_10           False
label_11           False
label_12           False
label_13           False
label_14           False
label_15           False
label_16           False
label_17           False
                   ...  
label_72           False
label_73           False
label_74           False
label_75           False
label_76           False
label_77           False
label_78           False
label_79           False
label_80           False
label_81           False
label_82           False
label_83           False
label_84           False
label_85           False
label_86           False
label_87           False
label_88           False
label_89           False
label_90           False
label_91           False
label_92           False
label_93           False
label_94           False
label_95           False
label_96           False
label_97           False
label_98           False
label_99           False
label_100          False
response           False
Length: 114, dtype: bool
------------------------------

3、类样本均衡查看

# 类样本均衡审查
def label_summary(df):
    '''
    查看每个类的样本量分布
    :param df: 数据框
    :return: 无
    '''
    print('Labels samples count:')
    print(df['value_level'].groupby(df['response']).count())  # 以response为分类汇总维度对value_level列计数统计
    print('-' * 60)

打印返回值:

Labels samples count:
response
0    30415
1     9584
Name: value_level, dtype: int64
------------------------------------------------------------

4、数据预处理

# 数据预处理
# NA值替换
def na_replace(df):
    '''
    将数据集中的NA值使用自定义方法替换
    :param df: 数据框
    :return: NA值替换后的数据框
    '''
    na_rules = {'age': df['age'].mean(),   #mean()函数求平均值
                'total_pageviews': df['total_pageviews'].mean(),   
                'edu': df['edu'].median(),    #median()函数求中值
                'edu_ages': df['edu_ages'].median(),
                'user_level': df['user_level'].median(),
                'industry': df['user_level'].median(),
                'act_level': df['act_level'].median(),
                'sex': df['sex'].median(),
                'red_money': df['red_money'].mean(),
                'region': df['region'].median()
                }  # 字典:定义各个列数据转换方法
    df = df.fillna(na_rules)  # 使用指定方法填充缺失值
    print('Check NA exists:')
    print((df.isnull().any().sum()))  # 查找是否还有缺失值
    print(('-' * 30))
    return df

打印返回值:

Check NA exists:
0
------------------------------

5、基于pipe管道的特征组合及模型训练

# 基于pipe的特征组合及模型训练
def pipeline_model(X, y=None, project_pipeline=None, train=True):
    '''
    建立一个包含特征组合以及模型训练的复合pipeline,实现基于管道的特征筛选、组合与模型训练一体化
    :param X: 特征集
    :param y: 预测目标集
    :param project_pipeline: pipeline对象,训练阶段获取,默认为None
    :param train: 所处阶段,默认为True
    :return: 训练阶段返回pipeline对象,预测阶段返回预测值
    '''

    if train:  # 如果是训练阶段
        # 建立pipeline中用到的模型对象
        model_etc = ExtraTreesClassifier()  # ExtraTree,用于EFE的模型对象
        model_rfe = RFE(model_etc)  # 使用RFE方法提取重要特征
        model_lda = LinearDiscriminantAnalysis()  # LDA模型对象
        model_adaboost = AdaBoostClassifier()  # 分类对象

        # 构建带有嵌套的pipeline
        project_pipeline = Pipeline([
            ('feature_union', FeatureUnion(  # 组合特征pipeline
                transformer_list=[
                    ('model_rfe', model_rfe),  # 通过RFE中提取特征
                    ('model_lda', model_lda),  # 通过LDA提取特征
                ],
                transformer_weights={  # 建立不同特征模型的权重
                    'model_rfe': 1,  # RFE模型权重
                    'model_lda': 0.8,  # LDA模型权重
                },
            )),
            ('model_adaboost', model_adaboost),  # adaboost模型对象
        ])

        # 设置参数值
        project_pipeline.set_params(
            feature_union__model_rfe__estimator__n_estimators=20)  # ExtraTreesClassifier中n_estimators值
        project_pipeline.set_params(
            feature_union__model_rfe__estimator__n_jobs=-1)  # ExtraTreesClassifier中n_jobs值
        project_pipeline.set_params(
            feature_union__model_rfe__n_features_to_select=20)  # RFE中n_features_to_select值
        project_pipeline.set_params(feature_union__model_lda__n_components=1)  # LDA中n_components值
        project_pipeline.set_params(feature_union__n_jobs=-1)  # FeatureUnion中n_jobs值
        # project_pipeline.get_params()  # 打印pipline参数详情

        # pipeline交叉检验
        num = 4  # 交叉检验次数
        cv = StratifiedKFold(num)  # 设置交叉检验
        score_list = list()  # 建立空列表,用于存放交叉检验得分
        time_list = list()  # 建立空列表,用于存储时间
        n_estimators_range = [50, 100, 150]  # 设置pipeline中adaboost的n_estimators值域
        for parameter in n_estimators_range:  # 遍历每个参数值
            t1 = time.time()  # 记录交叉检验开始的时间
            print(('set parameters: %s' % parameter))  # 打印当前模型使用的参数
            project_pipeline.set_params(model_adaboost__n_estimators=parameter)  # 通过管道设置分类模型参数
            score_tmp = cross_val_score(project_pipeline, X, y, scoring='accuracy',
                                        cv=cv)  # 使用交叉检验计算得分
            t2 = time.time()  # 记录交叉检验结束时间
            time_list.append(t2 - t1)  # 计算交叉检验时间并追加到列表
            score_list.append(score_tmp)  # 将得分追加到列表

        # 组合交叉检验得分和详情数据
        data_mat = np.hstack(
            (np.array([n_estimators_range, time_list]).T, np.array(score_list)))  # 将时间与得分组合
        socre_cols = ['n_estimators', 'time']
        socre_cols.extend([''.join(['score', str(i)]) for i in range(num)])
        score_pd = pd.DataFrame(data_mat, columns=socre_cols)  # 建立数据框
        score_pd['score_mean'] = score_pd.iloc[:, 2:-1].mean(axis=1)  # 计算得分均值
        score_pd['score_std'] = score_pd.iloc[:, 2:-2].std(axis=1)  # 计算得分std
        print('pipeline score details:')
        print((score_pd.round(4)))  # 打印每个参数得到的交叉检验指标数据,只保留2位小数
        print(('-' * 60))

        # 将最优参数设置到模型中,并训练pipeline
        project_pipeline.set_params(model_adaboost__n_estimators=50)  # 设置最优参数值
        project_pipeline.fit(X, y)  # 训练pipeline模型
        return project_pipeline  # 返回训练过的pipeline模型对象
    else:
        return project_pipeline.predict(X), project_pipeline.predict_proba(X)  # 返回预测值及概率

打印返回数据:

pipeline score details:
   n_estimators      time  score0  ...  score3  score_mean  score_std
0          50.0  318.9157  0.9110  ...  0.7940      0.9040     0.0143
1         100.0  328.4791  0.9138  ...  0.7970      0.9068     0.0137
2         150.0  328.1585  0.9146  ...  0.8027      0.9077     0.0135

6、数据应用

# 加载数据集
raw_data = pd.read_excel('order.xlsx', sheet_name=0)  # 读出Excel的第一个sheet
X = raw_data.drop('response', axis=1)  # 分割X
y = raw_data['response']  # 分割y
# 数据审查和预处理
set_summary(raw_data)  # 基本状态查看
na_summary(raw_data)  # 缺失值审查
label_summary(raw_data)  # 类样本均衡审查
X_t = na_replace(X)  # 替换缺失值

打印返回值:

Data Overview
Records: 8843	Dimension112
------------------------------
   age  total_pageviews  edu  edu_ages  ...  label_97  label_98  label_99  label_100
0   61           243019   10         1  ...         1         0         0          0
1   33           215596    4         5  ...         1         1         1          0
2   25            31350    2        10  ...         0         0         0          1
3   23           246965    2        10  ...         1         1         1          0
4   28            99838    1        13  ...         1         1         0          0

[5 rows x 113 columns]
------------------------------
Data DESC
               age  total_pageviews  ...     label_99    label_100
count  8843.000000     8.843000e+03  ...  8843.000000  8843.000000
mean     38.884428     1.903636e+05  ...     0.493385     0.499265
std      13.917154     1.069146e+05  ...     0.499985     0.500028
min      17.000000     1.349200e+04  ...     0.000000     0.000000
25%      28.000000     1.177010e+05  ...     0.000000     0.000000
50%      37.000000     1.775960e+05  ...     0.000000     0.000000
75%      48.000000     2.395390e+05  ...     1.000000     1.000000
max      90.000000     1.490400e+06  ...     1.000000     1.000000

[8 rows x 113 columns]
Data Dtypes
age                  int64
total_pageviews      int64
edu                  int64
edu_ages             int64
user_level         float64
industry           float64
value_level          int64
act_level            int64
sex                  int64
blue_money           int64
red_money            int64
work_hours           int64
region             float64
label_1              int64
label_2              int64
label_3              int64
label_4              int64
label_5              int64
label_6              int64
label_7              int64
label_8              int64
label_9              int64
label_10             int64
label_11             int64
label_12             int64
label_13             int64
label_14             int64
label_15             int64
label_16             int64
label_17             int64
                    ...   
label_71             int64
label_72             int64
label_73             int64
label_74             int64
label_75             int64
label_76             int64
label_77             int64
label_78             int64
label_79             int64
label_80             int64
label_81             int64
label_82             int64
label_83             int64
label_84             int64
label_85             int64
label_86             int64
label_87             int64
label_88             int64
label_89             int64
label_90             int64
label_91             int64
label_92             int64
label_93             int64
label_94             int64
label_95             int64
label_96             int64
label_97             int64
label_98             int64
label_99             int64
label_100            int64
Length: 113, dtype: object
------------------------------------------------------------
NA Cols:
age                False
total_pageviews    False
edu                False
edu_ages           False
user_level          True
industry            True
value_level        False
act_level          False
sex                False
blue_money         False
red_money          False
work_hours         False
region              True
label_1            False
label_2            False
label_3            False
label_4            False
label_5            False
label_6            False
label_7            False
label_8            False
label_9            False
label_10           False
label_11           False
label_12           False
label_13           False
label_14           False
label_15           False
label_16           False
label_17           False
                   ...  
label_71           False
label_72           False
label_73           False
label_74           False
label_75           False
label_76           False
label_77           False
label_78           False
label_79           False
label_80           False
label_81           False
label_82           False
label_83           False
label_84           False
label_85           False
label_86           False
label_87           False
label_88           False
label_89           False
label_90           False
label_91           False
label_92           False
label_93           False
label_94           False
label_95           False
label_96           False
label_97           False
label_98           False
label_99           False
label_100          False
Length: 113, dtype: bool
------------------------------
valid records for each Cols:
age                8843
total_pageviews    8843
edu                8843
edu_ages           8843
user_level         8841
industry           8841
value_level        8843
act_level          8843
sex                8843
blue_money         8843
red_money          8843
work_hours         8843
region             8838
label_1            8843
label_2            8843
label_3            8843
label_4            8843
label_5            8843
label_6            8843
label_7            8843
label_8            8843
label_9            8843
label_10           8843
label_11           8843
label_12           8843
label_13           8843
label_14           8843
label_15           8843
label_16           8843
label_17           8843
                   ... 
label_71           8843
label_72           8843
label_73           8843
label_74           8843
label_75           8843
label_76           8843
label_77           8843
label_78           8843
label_79           8843
label_80           8843
label_81           8843
label_82           8843
label_83           8843
label_84           8843
label_85           8843
label_86           8843
label_87           8843
label_88           8843
label_89           8843
label_90           8843
label_91           8843
label_92           8843
label_93           8843
label_94           8843
label_95           8843
label_96           8843
label_97           8843
label_98           8843
label_99           8843
label_100          8843
Length: 113, dtype: int64
------------------------------
Total number of NA lines is: 7
------------------------------
Check NA exists:
0
# 分类模型训练
project_pipeline = pipeline_model(X_t, y)  # 获得最佳分类模型参数信息

新数据集做预测

# 新数据集做预测
new_data = pd.read_excel('order.xlsx', sheetname=1)  # 读取要预测的数据集
final_reponse = new_data['final_response']  # 获取最终的目标变量值
new_data = new_data.drop('final_response', axis=1)  # 获得预测的输入变量X
set_summary(new_data)  # 基本状态查看
na_summary(new_data)  # 缺失值审查
new_X_t = na_replace(new_data)  # 替换缺失值
new_X_final, new_X_pro = pipeline_model(new_X_t, project_pipeline=project_pipeline,
                                        train=False)  # 对数据集做特征选择

输出

# 输出预测值以及预测概率
predict_labels = pd.DataFrame(new_X_final, columns=['labels'])  # 获得预测标签
predict_labels_pro = pd.DataFrame(new_X_pro, columns=['pro1', 'pro2'])  # 获得预测概率
predict_pd = pd.concat((new_data, predict_labels, predict_labels_pro), axis=1)  # 将预测标签、预测数据和原始数据X合并
print('Predict info')
print(predict_pd.head(5))  # 打印前5条结果
print('-' * 60)

打印返回值:

Predict info
   age  total_pageviews  edu  edu_ages  ...  label_100  labels      pro1      pro2
0   61           243019   10         1  ...          0       0  0.521405  0.478595
1   33           215596    4         5  ...          0       0  0.518151  0.481849
2   25            31350    2        10  ...          1       0  0.515863  0.484137
3   23           246965    2        10  ...          0       0  0.527564  0.472436
4   28            99838    1        13  ...          0       0  0.509676  0.490324

[5 rows x 116 columns]
------------------------------------------------------------

将预测结果写入:

# 将预测结果写入Excel
writer = pd.ExcelWriter('order_predict_result.xlsx')  # 创建写入文件对象
predict_pd.to_excel(writer, 'Sheet1')  # 将数据写入sheet1
writer.save()  # 保存文件

与实际效果相比较:

# 后续--与实际效果的比较
print('final accuracy: {0}'.format(accuracy_score(final_reponse, predict_labels)))

打印返回值:

final accuracy: 0.8279995476648196

结论:0.827的预测准确率很高,可具有会员数据运营参考价值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是使用Java实现的AdaBoost算法代码,用于鸢尾花分类: ```java import java.util.ArrayList; import java.util.Collections; public class AdaBoost { // 训练数据集 private ArrayList<ArrayList<Double>> dataSet; // 类别标签 private ArrayList<Integer> labels; // 弱分类器数目 private int weakNum; // 训练好的弱分类器集合 private ArrayList<WeakClassifier> weakClassifiers; // AdaBoost构造函数 public AdaBoost(ArrayList<ArrayList<Double>> dataSet, ArrayList<Integer> labels, int weakNum) { this.dataSet = dataSet; this.labels = labels; this.weakNum = weakNum; this.weakClassifiers = new ArrayList<>(); } // 训练分类器 public void train() { int size = dataSet.size(); // 初始权重向量 ArrayList<Double> weights = new ArrayList<>(); for (int i = 0; i < size; i++) { weights.add(1.0 / size); } // 训练 weakNum 个弱分类器 for (int i = 0; i < weakNum; i++) { // 训练单个弱分类器 WeakClassifier weakClassifier = new WeakClassifier(dataSet, labels, weights); weakClassifier.train(); // 计算错误率 double error = 0.0; for (int j = 0; j < size; j++) { if (weakClassifier.predict(dataSet.get(j)) != labels.get(j)) { error += weights.get(j); } } // 计算弱分类器权重 double alpha = 0.5 * Math.log((1 - error) / error); weakClassifier.setAlpha(alpha); // 更新权重向量 for (int j = 0; j < size; j++) { if (weakClassifier.predict(dataSet.get(j)) == labels.get(j)) { weights.set(j, weights.get(j) * Math.exp(-alpha)); } else { weights.set(j, weights.get(j) * Math.exp(alpha)); } } // 归一权重向量 double sum = 0.0; for (int j = 0; j < size; j++) { sum += weights.get(j); } for (int j = 0; j < size; j++) { weights.set(j, weights.get(j) / sum); } // 将训练好的弱分类器加入集合 weakClassifiers.add(weakClassifier); } } // 预测分类结果 public int predict(ArrayList<Double> data) { double sum = 0.0; for (WeakClassifier wc : weakClassifiers) { sum += wc.predict(data) * wc.getAlpha(); } if (sum > 0) { return 1; } else { return -1; } } // 测试分类器 public void test(ArrayList<ArrayList<Double>> testData, ArrayList<Integer> testLabels) { int errorNum = 0; int size = testData.size(); for (int i = 0; i < size; i++) { if (predict(testData.get(i)) != testLabels.get(i)) { errorNum++; } } double accuracy = 1 - (double) errorNum / size; System.out.println("Accuracy: " + accuracy); } // 主函数 public static void main(String[] args) { // 读取数据集 ArrayList<ArrayList<Double>> dataSet = Util.loadDataSet("iris.data"); // 打乱数据集顺序 Collections.shuffle(dataSet); // 获取标签 ArrayList<Integer> labels = new ArrayList<>(); for (ArrayList<Double> data : dataSet) { if (data.get(data.size() - 1) == 1) { labels.add(1); } else { labels.add(-1); } } // 划分训练集和测试集 ArrayList<ArrayList<Double>> trainData = new ArrayList<>(); ArrayList<ArrayList<Double>> testData = new ArrayList<>(); ArrayList<Integer> trainLabels = new ArrayList<>(); ArrayList<Integer> testLabels = new ArrayList<>(); for (int i = 0; i < dataSet.size(); i++) { if (i % 5 == 0) { testData.add(dataSet.get(i)); testLabels.add(labels.get(i)); } else { trainData.add(dataSet.get(i)); trainLabels.add(labels.get(i)); } } // 训练 AdaBoost 分类器 AdaBoost adaBoost = new AdaBoost(trainData, trainLabels, 10); adaBoost.train(); // 测试分类器 adaBoost.test(testData, testLabels); } } ``` 需要注意的是,此代码中的 `WeakClassifier` 类是用于实现单个弱分类器的训练和预测的,需要自行实现。同时,数据集的加载和处理部分也需要根据实际情况进行修改。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值