自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 电商数据实战分析第二篇—客户营销响应预测

1.销售预测通过电商过去的数据,主要了解总体的销售情况,用户消费现状、产品销售现状、流量现状、风控现状、市场竞争现状这里主要对客户进行一个销售响应预测,把握客户未来的消费可能性。2.预测方法专家经验预测法、机器学习算法预测、时间序列预测、线性回归预测这里采用机器学习算法预测3.机器学习算法选择算法模型的选择主要根据数据的数据量、特征数、维度之间的相关性,目的是获取高的预测准确率,没有最完美的分类器,只有最合适的分类器,下面简要说一下常用分类算法的思路和应用场景。【KNN】思路 ——根据待判

2020-05-29 02:03:22 1693 3

原创 MySQL-笔试题一

一、一个电商客户消费记录表data_outer的表字段为yearmonth年月、user_id用户ID、price月消费(若该月没有消费则不存在),一共记录201910-202002五个月的消费。该表的一条记录为201910,29025780,41.68表示用户ID为29025780的用户在2019年10月份消费了41.68元按照要求写出相应的SQL语句1.找出在前三个月消费都在51-100元,而后两个没有消费的用户IDselect a.user_id from (select user_id f

2020-05-23 23:21:31 304

原创 电商数据分析实战第一篇——客户消费行为分析

一、认识用户分析简单说明一下,用户分析包括基本属性、交易行为、浏览行为、服务体验、社交分享这几个方面的分析,主要应用场景是用户画像、用户忠诚度提升策略设计、用户数增长、精准运营。这里只进行用户消费行为分析,主要来认识是用户在总体和个体上的消费情况,从大到小,对用户的消费质量有一个更深的认识,利于后续的精准运营策略设计。二、分析步骤2.1数据预处理数据的提取、清洗、转换2.2用户总体消费情况分析按月进行用户消费金额、消费次数、消费人数、消费客单价、人均消费分析,作出描述性统计和趋势图,把握用户总

2020-05-19 02:11:52 9813 6

原创 电商数据分析入门-基于RFM模型的用户分析案例笔记

1.认识电商数据通常电商数据重点都是围绕着人物场三个方面进行划分,关于人的电商数据主要是能解释用户行为且能对用户进行画像的数据,包括用户的基本属性(年龄、地域、性别、年收入等)、行为属性(访问渠道、访问时间段、访问时长等)以及思想属性(用户评价、用户打分、用户投诉等);关于物的电商数据主要能描述产品特征的数据,包括基本属性(分类、功能、物质特征等)和价值属性(价格、需求量等);关于场则用于描述发生交易时的场景的地点,简单来说就是发生交易时店铺的样子是怎样的,而对于电商来说场包括虚拟的网上店铺的场和现实

2020-05-13 00:44:18 2824

原创 python preprocessing数据标准处理方法总结

1.标准化处理 x-mean/stdfrom sklearn.preprocessing import StandardScaler()z_score_scaler=StandardScaler()data_scale=z_score_scaler.fit_transform(data)2.max-min标准化 x-min/max-minfrom sklearn.preprocessing import MinMaxScalermin_max_scaler=MinMaxScaler()dat

2020-05-10 02:10:01 2083

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除