matlab中mahal函数_MATLAB求马氏距离(Mahalanobis distance)

本文详细介绍了MATLAB中如何计算马氏距离,包括马氏距离的计算公式,使用pdist函数及自定义计算过程,并强调了协方差矩阵的重要性,以及马氏距离对总体变化的敏感性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MATLAB求马氏距离(Mahalanobis distance)

1.马氏距离计算公式

d2(xi,xj)=(xi-xj)TS-1(xi-xj)

其中,S是总体的协方差矩阵,而不是样本的协方差矩阵。

2.matlab中现有的函数

>> x=[155 66;180 71;190 73;160 60;190 68;150 58;170 75]

x =

155 66

180 71

190 73

160 60

190 68

150 58

170 75

>> Y = pdist(x,‘mahal‘)

Y =

Columns 1 through 5

1.572816369474562 2.201942917264386 1.635800793960578 2.695107559788053 1.478413355546874

Columns 6 through 10

1.404831102709996 0.629126547789825 1.713111078598705 1.391260434780810 2.103238561272744

Columns 11 through 15

1.590313263839551 2.103238561272744 1.090736759616727 2.589223001191582 2.033867095735081

Columns 16 through 20

1.825496244926879 0.629126547789825 2.743712945526665 2.441925172889290 2.980237487501595

Colum

### MATLAB 中 `mahalanobis_values` 的定义和用法 在MATLAB环境中,`mahal` 或者更广泛提及的马氏距离计算功能,并不存在名为 `mahalanobis_values` 的内置函数。然而,基于提供的参考资料可以推断出如何实现并理解类似的自定义函数。 #### 马氏距离简介 马氏距离是一种有效的计算两个未知样本集之间相似度的方法,在统计学上广泛应用。它考虑了各维度之间的相关性,通过协方差矩阵来衡量不同变量间的关系[^1]。 #### 自定义 `mahalanobis_values` 函数示例 为了满足需,下面展示了一个可能的 `mahalanobis_values` 实现方式: ```matlab function distances = mahalanobis_values(X, Y, Cov) % 计算给定数据点相对于另一组数据点集合中心的马氏距离。 % % 输入参数: % X - 测试数据点 (NxD matrix),其中 N 是样本数量,D 是特征数; % Y - 参考数据点 (MxD matrix),用于估计均值和协方差; % Cov - 协方差矩阵 (DxD matrix) 如果已知可以直接提供; % % 输出参数: % distances - 各个测试点对应的马氏距离 (Nx1 vector) if nargin < 3 || isempty(Cov) % 当未给出协方差矩阵时,默认使用Y来估算 mu_Y = mean(Y); Sigmahat = cov(Y); else Sigmahat = Cov; end invSigmahat = inv(Sigmahat); diffs = bsxfun(@minus, X, mean(Y)); distances = sqrt(sum(diffs * invSigmahat .* diffs, 2)); end ``` 此代码片段展示了如何创建一个接受两组或多维数组作为输入,并返回每一对观测值之间马氏距离的功能。这里假设第二组数据用来构建分布模型(即得其均值和协方差),而第一组则是待测的新观察值[^4]。 #### 使用案例 假设有如下训练数据 `data_train` 和新来的测试数据 `new_data_point`, 则可以通过上述函数得到它们各自的马氏距离: ```matlab % 假设已经获得了训练数据 data_train 并进行了PCA降维处理 cov_matrix = cov(data_train); mean_vector = mean(data_train); % 新的数据点 new_data_point 进行同样的预处理后传入函数 mdist = mahalanobis_values(new_data_point', data_train', cov_matrix'); disp(['The Mahalanobis distance is ', num2str(mdist)]); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值