支持向量机的基本思想_SVM支持向量机+实例展示

本文详细介绍了支持向量机(SVM)的基本思想和数学模型,包括SVM的线性分类、非线性分类的解决办法(核函数)、求解策略以及在多类别分类中的应用。SVM通过寻找最大间隔的决策边界,实现对训练数据的有效分类,同时,核函数的引入使得SVM能处理非线性可分问题。虽然SVM存在训练时间复杂度较高和参数调整的问题,但其在高维数据和防止过拟合方面的优势使其在机器学习领域中占有重要地位。
摘要由CSDN通过智能技术生成

一、SVM简介

SVM定义:支持向量机(英语:support vector machine,常简称为SVM,又名支持向量网络)是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。简言之,SVM就是一种二类分类模型,他的基本模型是定义在特征空间的间隔最大的线性分类器,SVM的学习策略就是间隔最大化。

75120ab17f8c2f353251694a46874e0a.png

支持向量机思想:为了把两组数据分开,在空心点的类别找到一个或多个点离实心点最近,在实心点中找到一个或多个点与空心点最近,分类实心和空心点取决于这些边界上的点而与离边界较远的点,即在分割两类别点的时候,只需要考虑支持向量,通过支持向量确定分割直线。假设此直线有宽度,左边贴合一个边界点,右边贴和另一组,实现把点分开并且宽度最大。关键取决于w方向,通过将x1、x2、x3三点代入wx+b=1/-1中求出w和b的值。推导过程如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值