python打印为nan变量的数量_Pandas统计dataframe列中为NaN的行数

这分为两种情况:缺少值NaN和字符串NaN。

缺少值NaNdf = pd.DataFrame({'value':[np.nan, np.nan, 1, 5, 7]})

print (df)

value

0 NaN

1 NaN

2 1.0

3 5.0

4 7.0

count = df['value'].isna().sum()

#或者 count = df['value'].isnull().sum()

print (count)

2

判断列的值是否为nan,可以使用isna()或者isnull()函数。

字符串NaNdf = pd.DataFrame({'value':['NaN', 'NaN', 1, 5, 'NaN']})

print (df)

value

0 NaN

1 NaN

2 2

3 5

4 NaN

count = df['value'].eq('NaN').sum()

#或者count = (df['value'] == 'NaN').sum()

print (count)

3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值