Leetcode 032 最长有效括号
一、题目描述
题目描述:给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。
示例1:
输入
: “)()())”
输出: 4
解释: 最长有效括号子串为 “()()”
实例2:
输入: “())()”
输出: 2
解释: 最长有效括号子串为 “()”
二、解法
1.动态规划
思路 :将"(“对应位置的值置为0,遇见右括号才进行更新
情况1:当s[i]=”)" and s[i-1]="(",即s形如“…()”的时候:
dp[i] = dp[i-2]+2
情况2:当s[i]=")" and s[i-1]=")",即s形如“…()((()))”的时候:
如果 s[i]=")" and s[i-dp[i-1]-1]="(":
更新规则为:dp[i] = 2 + dp[i-1] + dp[i-dp[i-1]-1-1]
其中,2代表的是s[i-dp[i-1]-1]="("和s[i]匹配,dp[i-dp[i-1]-1-1]代表的是s[i-dp[i-1]-1]左边的字符的匹配情况
dp[i-1]则是(i,i-dp[i-1]-1)之间字符的匹配情况
class Solution:
def longestValidParentheses(self, s):
dp = [0 for _ in range(len(s))]
max_len = 0
for i in range(len(s)):
if s[i]==")" :
# if s[i-1]=="(" and (i-2>=0):
# dp[i] = dp[i-2]+2
if s[i-dp[i-1]-1]=="(" and (i-dp[i-1]-1>=0):
dp[i] = 2 + dp[i-1] + dp[i-dp[i-1]-1-1]
print(dp)
return max(dp)
# 修改:因为我发现第二个if包括了第一个if的内容,可以把第一个if去掉,去掉后dp数组并未改变
2.栈
思路 :
对于遇到的每个 ‘(’ ,我们将它的下标放入栈中
对于遇到的每个 ‘)’,我们先弹出栈顶元素表示匹配了当前右括号:
如果栈为空,说明当前的右括号为没有被匹配的右括号,我们将其下标放入栈中来更新我们之前提到的「最后一个没有被匹配的右括号的下标」
如果栈不为空,当前右括号的下标减去栈顶元素即为「以该右括号为结尾的最长有效括号的长度」
我们从前往后遍历字符串并更新答案即可。
需要注意的是,如果一开始栈为空,第一个字符为左括号的时候我们会将其放入栈中,
这样就不满足提及的「最后一个没有被匹配的右括号的下标」,为了保持统一,
我们在一开始的时候往栈中放入一个值为 −1 的元素。
class Solution:
def longestValidParentheses(self, s):
h = [-1]
max_len = 0
for i in range(len(s)):
if s[i]=="(":
h.append(i)
else:
# 这步为关键之处,先出栈,再判断栈是否为空
h.pop()
if len(h)>0:
max_len = max(max_len,i-h[-1])
else:
h.append(i)
return max_len
3.正向逆向结合法
以“()(()()”和"())()()"为例
思路 :利用一个指针从头移动到字符串s的尾部(正向),然后再移动回来(逆向)
指针移动时维护left和right的值,left和right表明左右括号的数量,当左右括号数量相等时候,此时的匹配括号长度为left*2
需要注意的是,在正向移动的时候,发现右括号数量大于左括号数量时候,置left=right=0(不反向移动的话,对于’()(()()'输出长度为2,正确是4)
在反向移动时候,发现左括号数量大于右括号时候,置left=right=0
class Solution:
def longestValidParentheses(self, s):
max_len = 0
left = 0
right = 0
lenth = len(s)
# 正向
for i in range(lenth):
if s[i]=="(":
left += 1
else:
right += 1
if right > left:
right = 0
left = 0
elif right==left:
max_len = max(max_len,left*2)
else:
pass
# 逆向
right = 0
left = 0
for i in range(lenth-1, -1, -1):
if s[i]=="(":
left += 1
else:
right += 1
if right < left:
right = 0
left = 0
elif right==left:
max_len = max(max_len,left*2)
else:
pass
return max_len
Reference