clickhouse批量写入_数据源管理 | OLAP查询引擎,ClickHouse集群化管理

一、列式库简介

ClickHouse是俄罗斯的Yandex公司于2016年开源的列式存储数据库(DBMS),主要用于OLAP在线分析处理查询,能够使用SQL查询实时生成分析数据报告。

列式存储

eb4946417060191037d70dab25f3753f.png

行式存储和列式存储,数据在磁盘上的组织结构有着根本不同,数据分析计算时,行式存储需要遍历整表,列式存储只需要遍历单个列,所以列式库更适合做大宽表,用来做数据分析计算。

絮叨一句:注意这里比较的场景,是数据分析计算的场景。

二、集群配置

1、基础环境

ClickHouse单服务默认已经安装完毕

  • Centos7下搭建ClickHouse列式存储数据库
  • SpringBoot2 整合 ClickHouse数据库

2、取消文件限制

vim /etc/security/limits.confvim /etc/security/limits.d/90-nproc.conf文件末尾追加* soft nofile 65536 * hard nofile 65536 * soft nproc 131072 * hard nproc 131072

3、取消SELINUX

修改/etc/selinux/config中的SELINUX=disabled后重启

4、集群配置文件

服务分别添加集群配置:vim /etc/metrika.xml

true192.168.72.1339000true192.168.72.1369000true192.168.72.1379000192.168.72.1332181192.168.72.1362181192.168.72.1372181192.168.72.133::/0100000000000.01lz4

注意这里

192.168.72.133

配置各自服务的IP地址。

5、启动集群

分别启动三台服务

service clickhouse-server start

6、登录客户端查看

这里登录任意一台服务就好

clickhouse-clienten-master :) select * from system.clusters
568ef748002d6c113ebe84eaa389e156.png

这里这里集群名称:clickhouse_cluster,后续使用。

7、基本环境测试

三台服务上同时创建表结构。

CREATE TABLE ontime_local (FlightDate Date,Year UInt16) ENGINE = MergeTree(FlightDate, (Year, FlightDate), 8192);

133环境创建分布表

CREATE TABLE ontime_all AS ontime_local ENGINE = Distributed(clickhouse_cluster, default, ontime_local, rand());

随便写入一台服务数据

insert into ontime_local (FlightDate,Year) values ('2020-03-12',2020);

查询总表

select * from ontime_all;

写入总表,数据会分布到各个单表中

insert into ontime_all (FlightDate,Year)values('2001-10-12',2001);insert into ontime_all (FlightDate,Year)values('2002-10-12',2002);insert into ontime_all (FlightDate,Year)values('2003-10-12',2003);

任意关闭一台服务,集群查询直接挂掉

三、集群环境整合

1、基础配置

url:配置全部的服务列表,主要用来管理表结构,批量处理;

cluster:集群连接服务,可以基于Nginx代理服务配置;

spring:  datasource:    type: com.alibaba.druid.pool.DruidDataSource    click:      driverClassName: ru.yandex.clickhouse.ClickHouseDriver      url: jdbc:clickhouse://127.0.0.1:8123/default,jdbc:clickhouse://127.0.0.1:8123/default,jdbc:clickhouse://127.0.0.1:8123/default      cluster: jdbc:clickhouse://127.0.0.1:8123/default      initialSize: 10      maxActive: 100      minIdle: 10      maxWait: 6000

2、管理接口

分别向每个单节点服务创建表和写入数据:

data_shard(单节点数据)

data_all(分布数据)

@RestControllerpublic class DataShardWeb {    @Resource    private JdbcFactory jdbcFactory ;    /**     * 基础表结构创建     */    @GetMapping("/createTable")    public String createTable (){        List jdbcTemplateList = jdbcFactory.getJdbcList();        for (JdbcTemplate jdbcTemplate:jdbcTemplateList){            jdbcTemplate.execute("CREATE TABLE data_shard (FlightDate Date,Year UInt16) ENGINE = MergeTree(FlightDate, (Year, FlightDate), 8192)");            jdbcTemplate.execute("CREATE TABLE data_all AS data_shard ENGINE = Distributed(clickhouse_cluster, default, data_shard, rand())");        }        return "success" ;    }    /**     * 节点表写入数据     */    @GetMapping("/insertData")    public String insertData (){        List jdbcTemplateList = jdbcFactory.getJdbcList();        for (JdbcTemplate jdbcTemplate:jdbcTemplateList){            jdbcTemplate.execute("insert into data_shard (FlightDate,Year) values ('2020-04-12',2020)");        }        return "success" ;    }}

3、集群查询

上述步骤执行完成后,可以连接集群服务查询分布总表和单表的数据。

基于Druid连接

@Configurationpublic class DruidConfig {    @Resource    private JdbcParamConfig jdbcParamConfig ;    @Bean    public DataSource dataSource() {        DruidDataSource datasource = new DruidDataSource();        datasource.setUrl(jdbcParamConfig.getCluster());        datasource.setDriverClassName(jdbcParamConfig.getDriverClassName());        datasource.setInitialSize(jdbcParamConfig.getInitialSize());        datasource.setMinIdle(jdbcParamConfig.getMinIdle());        datasource.setMaxActive(jdbcParamConfig.getMaxActive());        datasource.setMaxWait(jdbcParamConfig.getMaxWait());        return datasource;    }

基于mapper查询

        select * from data_all where Year=2020    

推荐阅读:源码 -> GitHub || GitEE

数据源管理 | 基于JDBC模式,适配和管理动态数据源

数据源管理 | PostgreSQL环境整合,JSON类型应用

数据源管理 | 基于DataX组件,同步数据和源码分析

数据源管理 | 主从库动态路由,AOP模式读写分离

数据源管理 | 关系型分库分表,列式库分布式计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值