一点提前就需要知道的知识

非线性系统

先看线性系统,(这是百度百科的解释),还有这是维基百科的
我自己的理解是:
− - 1.用线性算子组成的系统。
− - 2.同时满足叠加性与均匀性。
− − -- 2.1叠加性:不同的输入叠加在一起,输出对应的是不同的输入对应的输出的叠加。
− − -- 2.2均匀性:输出与输入成比例。输入扩大n倍,输出扩大n倍。

关于这篇论文英语缩写的注释

WNN − - Wavelet Neural Network 小波神经网络

关于“点”的理解

看完哈尔滨工业大学的冉启文教授对小波分析的部分讲解课程,对于“点”的理解有了很大的改变。
中学时,对“点”的理解是:数轴上的一个点,对应一个实数,
\qquad \qquad 接着,二维坐标系上的一个点对应的是,(x,y)。
大学时,我们学到了线性代数,“点”对应着一个向量。
接着,对于小波分析,我们需要引入一种新的“点”,这里的每一个点都是一个函数,定义在R上的函数,条件是它平方可和。由这样的点可组成的线性空间。
即是这么一个函数f(x),它需要满足 ∫ − ∞ + ∞ ∣ f ( x ) 2 ∣ d x < + ∞ \int_{-\infty}^{+\infty} |f(x)^2|dx<+\infty +f(x)2dx<+
这样的函数在小波分析里面用到的很多。

关于数学里面空间的理解

这个部分参考的是SimpleAI这个公众号里面的谁能用人话给我说说希尔伯特空间??这篇推文。
关于空间,我自己的理解是定义了元素和结构的一个东西,类似于一种数据结构。元素就是里面的东西,结构就是运算的一些规则。是不是很类似数据结构!
1.线性空间,就是定义了加法和数乘的空间。
2.度量空间,定义了距离的空间,这里的距离有很多种,比如曼哈顿距离马氏距离等。计算规则各有不同,适应的场合也不同。我们通常计算的那个是欧式距离。
3.赋范空间,定义了范数的空间,范数就是一个元素自己的长度。
4.线性赋范空间,就是1+3.
5.巴拿赫空间,完备的赋范空间。完备是什么?完备是指该空间的任何一个柯西序列都收敛在该空间之内。这不好理解,换个近似的说法,在这个空间上,先定义极限,然后,无论怎么取极限,极限都还在这个空间内,就是完备的。这个空间默认包括距离,也就是包括三大要素:距离、范数、完备。
6.内积空间:定义了内积的空间。先定义内积,才有夹角,才有正交。
7.欧式空间:定义了内积的有限维实线性空间。
8.希尔伯特空间:完备的内积空间。(线性,内积和范数+ L 2 ( R ) L^2(R) L2(R)
先说一下为什么要定义这么多不同的空间,是为了在不同的条件下研究问题的方便,有的问题不需要那么严格的条件,有的问题需要,就是这样。
好了,希尔伯特空间的元素一般是函数,它的基是一组无限多的函数。

单射 ,满射与双射

单射在某些书中也叫入射,可理解成“原不同则像不同”。更精确地说,函数f被称为是单射时,对每一值域内的y,存在至多一个定义域内的x使得f(x) = y。
满射是指:如果每个可能的像至少有一个变量映射其上(即像集合B中的每个元素在A中都有一个或一个以上的原像),或者说值域任何元素都有至少有一个变量与之对应,那这个映射就叫做满射。
双射就是单射和满射的集合。(均来自百度百科)

高频对应细节,低频对应普通部位

欧拉公式

e i x = c o s x + i   s i n x e^{ix}=cos x+i\ sin x eix=cosx+i sinx
当x= π \pi π时, e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0

复共轭

1.共轭复数就是实部一样,虚部相反的实数,互为共轭复数。
2.函数的共轭,如果是底数为e的指数函数,其共轭就是将指数取为相反数。我只理解到了这里,剩下的不清楚了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

指针的值是地址

觉得还不错,我会继续努力的。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值