非线性系统
先看线性系统,(这是百度百科的解释),还有这是维基百科的。
我自己的理解是:
−
-
− 1.用线性算子组成的系统。
−
-
− 2.同时满足叠加性与均匀性。
−
−
--
−− 2.1叠加性:不同的输入叠加在一起,输出对应的是不同的输入对应的输出的叠加。
−
−
--
−− 2.2均匀性:输出与输入成比例。输入扩大n倍,输出扩大n倍。
关于这篇论文英语缩写的注释
WNN − - −Wavelet Neural Network 小波神经网络
关于“点”的理解
看完哈尔滨工业大学的冉启文教授对小波分析的部分讲解课程,对于“点”的理解有了很大的改变。
中学时,对“点”的理解是:数轴上的一个点,对应一个实数,
\qquad
\qquad
接着,二维坐标系上的一个点对应的是,(x,y)。
大学时,我们学到了线性代数,“点”对应着一个向量。
接着,对于小波分析,我们需要引入一种新的“点”,这里的每一个点都是一个函数,定义在R上的函数,条件是它平方可和。由这样的点可组成的线性空间。
即是这么一个函数f(x),它需要满足
∫
−
∞
+
∞
∣
f
(
x
)
2
∣
d
x
<
+
∞
\int_{-\infty}^{+\infty} |f(x)^2|dx<+\infty
∫−∞+∞∣f(x)2∣dx<+∞
这样的函数在小波分析里面用到的很多。
关于数学里面空间的理解
这个部分参考的是SimpleAI这个公众号里面的谁能用人话给我说说希尔伯特空间??这篇推文。
关于空间,我自己的理解是定义了元素和结构的一个东西,类似于一种数据结构。元素就是里面的东西,结构就是运算的一些规则。是不是很类似数据结构!
1.线性空间,就是定义了加法和数乘的空间。
2.度量空间,定义了距离的空间,这里的距离有很多种,比如曼哈顿距离,马氏距离等。计算规则各有不同,适应的场合也不同。我们通常计算的那个是欧式距离。
3.赋范空间,定义了范数的空间,范数就是一个元素自己的长度。
4.线性赋范空间,就是1+3.
5.巴拿赫空间,完备的赋范空间。完备是什么?完备是指该空间的任何一个柯西序列都收敛在该空间之内。这不好理解,换个近似的说法,在这个空间上,先定义极限,然后,无论怎么取极限,极限都还在这个空间内,就是完备的。这个空间默认包括距离,也就是包括三大要素:距离、范数、完备。
6.内积空间:定义了内积的空间。先定义内积,才有夹角,才有正交。
7.欧式空间:定义了内积的有限维实线性空间。
8.希尔伯特空间:完备的内积空间。(线性,内积和范数+
L
2
(
R
)
L^2(R)
L2(R))
先说一下为什么要定义这么多不同的空间,是为了在不同的条件下研究问题的方便,有的问题不需要那么严格的条件,有的问题需要,就是这样。
好了,希尔伯特空间的元素一般是函数,它的基是一组无限多的函数。
单射 ,满射与双射
单射在某些书中也叫入射,可理解成“原不同则像不同”。更精确地说,函数f被称为是单射时,对每一值域内的y,存在至多一个定义域内的x使得f(x) = y。
满射是指:如果每个可能的像至少有一个变量映射其上(即像集合B中的每个元素在A中都有一个或一个以上的原像),或者说值域任何元素都有至少有一个变量与之对应,那这个映射就叫做满射。
双射就是单射和满射的集合。(均来自百度百科)
高频对应细节,低频对应普通部位
欧拉公式
e
i
x
=
c
o
s
x
+
i
s
i
n
x
e^{ix}=cos x+i\ sin x
eix=cosx+i sinx
当x=
π
\pi
π时,
e
i
π
+
1
=
0
e^{i\pi}+1=0
eiπ+1=0
复共轭
1.共轭复数就是实部一样,虚部相反的实数,互为共轭复数。
2.函数的共轭,如果是底数为e的指数函数,其共轭就是将指数取为相反数。我只理解到了这里,剩下的不清楚了。