beta分布_常用概率分布总结(2)

11.正态分布

之后专开一篇写正态分布的各种知识点。

这里仅说下R里面用正态分布函数的一个注意点,一般书面写正态分布为

,如
,其中
,而R语言中写为
,即后面的参数写标准差,而非方差。

[1]基本

  • 密度函数
  • 期望
  • 方差
  • 特征函数

[2]重要性质

12.均匀分布

[1]基本

  • 密度函数

ad57b40df5102256c529d6f876fbed2b.png
k1 = seq(-1,3,by=0.01)
p = dunif(k1,1,2)
plot(k1,p)

3d3ebb98a92b27d2f275c4c3eed272c9.png
  • 期望

  • 方差

  • 特征函数

7de2b96ef2012d5b1bd23d5a18147e2d.png

[2]重要性质

1.均匀分布是产生服从其它分布的随机数基础

2.任何分布的随机变量经过其分布函数的变换后,都服从

​均匀分布

随机变量​
的分布函数为​
,对随机变量​
进行变量变换
​,则随机变量

13.指数分布(Exp(

))

[1]基本

  • 密度函数

51ebeb162a39182b7d0ff419fde47f6d.png
k1 = seq(-10,10,by=0.01)
p = dexp(k1,rate=2)
plot(k1,p)

e09314a14df98557315e9eefffe797ea.png
  • 期望

  • 方差

  • 特征函数

[2]重要性质

1.对于指数分布随机变量有,

如果​

表示寿命,

即某人已经50岁,则他活过60岁,和他60岁后他活过70岁的概率相同,以此类推他可以永远活下去。故指数分布有时也称为“永远年青” ,且只有指数分布有这个性质。

14.卡方分布

[1]基本

fd327a7d631e4fa365a4662392187bd9.png
  • 密度函数

38bed0cced7704db021f7f2a2030b517.png
k1 = seq(-2,5,by=0.01)  
p = dchisq(k1,5)   #自由度为5
plot(k1,p)

9ee93456d828e74c98f87935b0761a67.png
  • 期望

  • 方差
  • 特征函数

[2]重要性质

1.

15.t分布

[1]基本

be12e53d9ff5a07a31db7d9c3d54e657.png
  • 密度函数

0ec802ee777a569c8208e935a3572c3e.png
k1 = seq(-5,5,by=0.01)
p = dt(k1,5)
plot(k1,p)

05ae6c2cb27117c9cd2c70da637f4f34.png
  • 期望

  • 方差

  • 特征函数

[2]重要性质

16.F分布

[1]基本

4bab43177506574f560a03750073e945.png
  • 密度函数

fcd8557788c7601f3649082d3bbc4730.png
k1 = seq(-5,5,by=0.001)
p = df(k1,5,3)
plot(k1,p)

09ee0b9cff1725f2ef327d42eb31d130.png
  • 期望

  • 方差

  • 特征函数

[2]重要性质

1.

,则

17.柯西分布

[1]基本

  • 密度函数

da91b9e6b22c6b636e771fb362322324.png
k1 = seq(-5,10,by=0.01)
p = dcauchy(k1,location=2,scale=3)
plot(k1,p)

8fd08b924d3d5be4994be92fd3cb9ac4.png
  • 期望

不存在

  • 方差

不存在

  • 特征函数

[2]重要性质

1.这个分布的期望方差都不存在

18.Gamma分布

[1]基本

  • 密度函数

fd096cf0dbd460f728b9c3b684266a08.png
k1 = seq(-5,10,by=0.01)
p = dgamma(k1,shape=2,scale=3)
plot(k1,p)

93483658d6a10bbded951935ac128c94.png
  • 期望

  • 方差

  • 特征函数

[2]重要性质

1.

为指数分布,看特征函数即可。

2.

时为​
卡方分布,同样看特征函数即可知。

3.可加性

,则有

4.注意有两种记法,有人把第二个参数用其倒数表示,概率密度也做相应改变。

R里面的命令为rgamma(1,shape=a,rate=1,scale=s)

当概率函数形式为,

使用命令rgamma(1,shape=a,scale=s)

当概率函数形式为,

使用命令rgamma(1,shape=a,rate=s)

19.beta分布

[1]基本

  • 密度函数

591a26056ecfabcfd7252e8795bb89e6.png
k1 = seq(-5,10,by=0.001)
p = dbeta(k1,shape1=2,shape2=3)
plot(k1,p)

654b44cab0be184e9da9b63aad833ce2.png
  • 期望

  • 方差

  • 特征函数

c4b84c56320758e787292870ba0be6ba.png

[2]重要性质

20.对数正态分布

[1]基本

b51b8c0e1d506eadbb5fae28848e50c8.png
  • 密度函数

64b217336afd5476fa3ceebe92d41973.png
k1 = seq(-5,10,by=0.001)
p = dlnorm(k1,meanlog=2,sdlog=3)
plot(k1,p)

ca78546857c0387c4341285fb2716a9b.png
  • 期望

  • 方差

  • 特征函数

[2]重要性质

21.Weibull分布

[1]基本

  • 密度函数

45b561397d1de646658f697ae4e6afd0.png
k1 = seq(-5,10,by=0.001)
p = dweibull(k1,shape=2,scale=3)
plot(k1,p)

4f581cad2d04a2ad1149b3125a273b3b.png
  • 期望

df3d0c962b4771b60f23a1ee5d78323f.png
  • 方差

de36677c52c9ae9bbf8cf2f37ce41b56.png
  • 特征函数

[2]重要性质

22.逻辑分布

[1]基本

  • 密度函数

标准logistic分布,

  • 期望

  • 方差

  • 特征函数

[2]重要性质

1.标准logistic分布为

,分布函数为
,这是一个sigmoid函数,故有,

23.狄利克雷分布

[1]基本

也称为多元Beta分布, 是Beta分布在高维情形的推广。

在贝叶斯推断中,狄利克雷分布作为多项分布(或Categorical 分布)的共轭先验 ,在机器学习中被用于构建狄利克雷混合模型(Dirichlet mixture model)。可以看看本专栏中“狄利克雷过程和中餐馆过程”中关于狄利克雷过程的内容,来理解这段话。

  • 密度函数

3b0d297f1360034f365dbdbbce1616b6.png

f5e8c352b40efffb48d3bd3337402717.png

ec2fbb4376349542528d9307bfbd4885.png
library(MCMCpack)

rdirichlet(5, c(1,1,1) )

           [,1]      [,2]        [,3]
[1,] 0.32859142 0.6649473 0.006461324   #每行和为1,可以当作概率分布
[2,] 0.18262330 0.4242267 0.393149963
[3,] 0.04134631 0.7376723 0.220981374
[4,] 0.29466581 0.0553668 0.649967387
[5,] 0.70792987 0.1638178 0.128252348

狄利克雷分布也称为分布的分布

  • 期望
  • 方差
  • 特征函数

[2]重要性质

1.狄利克雷分布的边缘分布为Beta分布

2.

服从狄利克雷分布,其中两个边缘分布​
的联合分布服从狄利克雷分布
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值