Beta分布及其应用

贝塔分布(Beta Distribution)是一个连续的概率分布,它只有两个参数。它最重要的应用是为某项实验的成功概率建模。在本篇博客中,我们使用Beta分布作为描述。

原文地址:http://www.datalearner.com/blog/1051505532393058

一、Beta分布的定义及其简介

Beta分布是一个定义在[0,1]区间上的连续概率分布族,它有两个正值参数,称为形状参数,一般用 α β 表示。在贝叶斯推断中,Beta分布是Bernoulli、二项分布、负二项分布和几何分布的共轭先验分布。Beta分布的概率密度函数形式如下:

这里的 Γ 表示gamma函数。
Beta分布的均值是:

αα+β

方差是:

αβ(α+β)2(α+β+1)

下面我们看一下Beta分布的图形:
beta分布的R语言实例
  首先,我们可以画一个beta分布的概率密度函数。

set.seed(1)
x<-seq(0,1,length.out=10000)
plot(0,0,main='probability density function',xlim=c(0,1),ylim=c(0,2.5),ylab='PDF')
lines(x,dbeta(x,0.5,0.5),col='red')
lines(x,dbeta(x,1,2),col='green')
lines(x,dbeta(x,2,2),col='pink')
lines(x,dbeta(x,2,5),col='orange')
lines(x,dbeta(x,1,3),col='blue')
lines(x,dbeta(x,5,1),col='black')
legend('top',legend=c('α=0.5,β=0.5','α=1,β=2','α=2,β=2','α=2,β=5','α=1,β=3','α=5,β=1'),col=c('red','green','pink','orange','blue','black'),lwd=1)



  我们再来画一个beta分布的累计概率密度函数

set.seed(1)
x<-seq(0,1,length.out=10000)
plot(0,0,main='cumulative distribution function',xlim=c(0,1),ylim=c(0,1),ylab='PDF')
lines(x,pbeta(x,0.5,0.5),col='red')
lines(x,pbeta(x,1,2),col='green')
lines(x,pbeta(x,2,2),col='pink')
lines(x,pbeta(x,2,5),col='orange')
lines(x,pbeta(x,1,3),col='blue')
lines(x,pbeta(x,5,1),col='black')
legend('topleft',legend=c('α=0.5,β=0.5','α=1,β=2','α=2,β=2','α=2,β=5','α=1,β=3','α=5,β=1'),col=c('red','green','pink','orange','blue','black'),lwd=1)



从Beta分布的概率密度函数的图形我们可以看出,Beta分布有很多种形状,但都是在0-1区间内,因此Beta分布可以描述各种0-1区间内的形状(事件)。因此,它特别适合为某件事发生或者成功的概率建模。同时,当 α=1 β=1 的时候,它就是一个均匀分布。

下面我们使用三个例子来描述Beta分布的应用。

二、为实验成功概率建模(为棒球运动员的击球率建模)

Statlect网站上给出了一个简单的解释。假设一个概率实验只有两种结果,一个是成功,概率是 X ,另一个是失败,概率为 (1X) 。其中, X 的值我们是不知道的,但是它所有可能的情况也是等概率的。如果我们对 X 的不确定性用一种方式描述,那么,可以认为 X 是一个来自于 [0,1] 区间的均匀分布的样本。这是很合理的,因为 X 只可能是 [0,1] 之间的某个值。同时,我们对 X 也一无所知,认为它是 [0,1] 之间任何一个可能的值。这些都与 [0,1] 均匀分布的性质契合。现在,假设我们做了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值