
写在前面的话:
很高兴能够认识饭卡里还有好多钱这位土豪大佬。向大佬学习,为成为一名真正的段子手+逗比而奋斗。
范数的概念
向量的范数是一种用来刻画向量大小的一种度量。实数的绝对值,复数的模,三维空间向量的长度,都是抽象范数概念的原型。上述三个对象统一记为

这也是范数的定义,满足上述三条性质的映射我们称之为范数。显然,范数是函数的一种特例。关于三角不等式我们可以通过三角形两边之和大于第三边来理解。
随着以后的学习我们可以知道,长度是范数的一个特例。事实上,二范数对应的就是长度。我们在线性空间中定义内积时,就是把这三条性质作为公理来定义内积的。
我们下面给出向量范数的一些性质:

我们对于第四条性质给出证明。该性质我们可以理解为两边之差小于第三边。

我们下面具体考虑一个范数证明的题:

我们下面就二范数进行证明。
虽然前两个性质貌似是显然的,但是我们并不能这么说,我们现在用数学语言来描述一下。

关于三角不等式的证明需要用到柯西不等式,我们先来讲解一下柯西不等式。柯西不等式说的就是
我们在课本24页定义向量的长度的时候是这样定义的:

下面结合柯西不等式我们给出三角不等式的证明:

P范数的定义及证明
我们下面来引入更一般的范数定义:

我们要证明他的确是范数需要做诸多的准备工作。在证明过程中就用到了Young不等式和Holder不等式。虽然我们还没有证明,不过我们先引入这个概念和这种记法,因为在接下来的证明过程中会反复的用到。希望大家在看后面的证明过程中不要忘了开头提到的这一点。(就是P范数的定义形式)
我们下面来介绍一下Young不等式,这个不等式的介绍为Holder不等式的证明提供了一个快捷的途径。

该引理(Young不等式)证明如下,其思路就是矩形面积uv不会超过两个曲边梯形面积之和。注意这里会用到了变积分限。对u是在x轴上积分。对v就变成了y轴。
这里我们的曲线公式完全可以写成

我们有了Young不等式之后,下面来证明Holder不等式。我们首先给出Holder不等式的定义:

下面正面该结论成立:


在这里提醒大家一下,不要忘了开头P范数的定义,因此这里会有:
还记得我们前面说的柯西不等式吗?通过观察Holder不等式其实可以发现,柯西不等式是Holder不等式的一个特例。
我们给出课本上一道例题:

我们之前只对1范数,2范数和无穷范数进行过证明。我们现在要证明的是如果一个运算,只要满足这个性质。那么它就是一个范数。
下面我们给出证明过程,注意这个证明过程少了正定性和齐次性的证明,只证明了三角不等式。关于正定性和齐次性的证明可以参考之前的证明。


是不是大家已经看晕了,一坨又一坨。接下来的证明写的不是很详细,我写一个更详细的版本。

如果忘了,请再次回顾一下P范数的定义。这里特别要注意开P次幂的位置,一定要在中括号的外面。
好了,至此,P范数的证明就全部结束了。好像整个证明过程略微有点长。通过这个证明,P可以取得任意正整数,大大丰富了我们对于如何度量长度的手段,可能有人会问,那P能不能取分数呢?我们现在来说一下:
答案是不行的,只需要举一个反例:
我们之所以引入范数,为的就是能够在线性空间中进行度量。为了实现这一点,我们有必要引入一个新的概念,这也是这一节啰啰嗦嗦说了半天,想要表达的核心内容。
向量的范数
为了实现在n维空间中的度量,我们必须 将向量的概念和范数进行结合。直接上定理:

这里的
证明如下(范数的三条定义):

实际上这个定理想表达这样一种思想:m维空间中的范数通过矩阵A映射到了n维空间上。有的时候一个空间中的范数我们不好度量,这时候我们可以在另外一个n维空间中进行度量,只需要找到这样的映射矩阵就可以了。
我们下面给出向量序列收敛的定义:

同数列一样,向量也是有好多元素组合而成的,我们将之称为向量序列
向量存在的充要条件就是n个数列极限存在。
我们下面介绍一下向量范数等价:


向量范数等价是为了解决这样一个问题:我们知道范数有无穷多种(1范数,2范数。。。),同一向量按不同的规定算出的范数一般是不相等的。那么到底按照哪种规则呢?这不就乱了。
范数等价保证了向量序列的收敛性与范数选取无关。无穷范数收敛,其他范数一定收敛。其他范数收敛,无穷范数一定收敛。
我们给出一个定理来具体说明一下:



再给出一个例题:


通过这个例题我们可以看到通过范数来证明收敛的优越性所在,这也是为什么我们有了长度之和还要定义长度的一个原因。
审稿大人辛苦了,这篇文章有点长。