铅垂法:常用初中数学函数与几何综合题中,一次函数、反比例函数、二次函数求面积问题必考点,你若掌握,必是高分!(特别是平时速度不够的同学一定要仔细研磨)
题目:在平面直角坐标系中,已知A(1,1)、B(7,3)、C(4,7),求△ABC的面积.
法1、(补——加减法)
法2、(割)
可得:AE=BF=3
△AED≌△BFD
法3、(铅垂法)
【解题步骤】
(1)求A、B两点水平距离,即水平宽;
(2)过点C作x轴垂线与AB交于点D,可得点D横坐标同点C;
(3)求直线AB解析式并代入点D横坐标,得点D纵坐标;
(4)根据C、D坐标求得铅垂高;
(5)利用公式求得三角形面积.
根据A、B两点坐标求得直线AB解析式为:
由点C坐标(4,7)可得D点横坐标为4,
将4代入直线AB解析式得D点纵坐标为2,
故D点坐标为(4,2),CD=5,
经典例题:(难度层层递进,强化方法吸收)
例1、如图,在平面直角坐标系中,已知A(-1,3),B(3,-2),则△AOB的面积为___________.
例2、如图,直线y=-x+4与x轴、y轴分别交于点A,点B,点P的坐标为(-2,2),则S△PAB =___________.
例3、如图,直线 y=½ x+1经过点A(1,m),B(4,n),点C的坐标为(2,5),求△ABC的面积.
例4、如图,直线AB:y=x+1与x轴、y轴分别交于点A,点B,直线CD:y=kx-2与x轴、y轴分别交于点C,点D,直线AB与直线CD交于点P.若S△APD =4.5,则k=__________.
例5、如图,在平面直角坐标系中,已知A(2,4),B(6,6),C(8,2),求四边形OABC的面积.
例6、如图,直线 y=½ x-1与x轴、y轴分别交于A,B两点,C(1,2),坐标轴上是否存在点P,使S△ABP =S△ABC ?若存在,求出点P的坐标;若不存在,请说明理由.
需要解析的同学可以加微信哦
努力不分背景,每个人都在奋斗,都有自己奋斗的目标和方式,之所以会拉开差距,是因为每个人奋斗的力度不同!世间最可怕的事,就是比你优秀的人比你更努力,更勤奋、更极致!