节点电压法经典例题带解析_一次函数必考题(面积之铅垂法)

博客介绍了初中数学中铅垂法在函数与几何综合题求面积问题的应用。以△ABC为例,详细说明了铅垂法解题步骤,还给出多个难度递进的经典例题,如求△AOB、△PAB等面积,以及涉及直线交点和坐标求解的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

67dc728ce9ab0f6d6ecf2ef663f0f128.png

铅垂法:常用初中数学函数与几何综合题中,一次函数、反比例函数、二次函数求面积问题必考点,你若掌握,必是高分!(特别是平时速度不够的同学一定要仔细研磨)

题目:在平面直角坐标系中,已知A(1,1)、B(7,3)、C(4,7),求△ABC的面积.

45396bb58e61ec0a3b8748a6239beda1.png

法1、(补——加减法)

fabb01a9fabba2960986ac2ad79a3b36.png

a0e288a95c18a03b5a06ecc7c3901cc9.png

法2、(割)

182c2d0613dc3d5e1d339fb7369eb584.png

可得:AE=BF=3

△AED≌△BFD     

法3、(铅垂法)

d1df4360d3dec914d0f4e6831524f4b2.pngbbae48a9e55b12739b0581fb6671b460.png

【解题步骤】

(1)求A、B两点水平距离,即水平宽;

(2)过点C作x轴垂线与AB交于点D,可得点D横坐标同点C;

(3)求直线AB解析式并代入点D横坐标,得点D纵坐标;

(4)根据C、D坐标求得铅垂高;

(5)利用公式求得三角形面积.

根据A、B两点坐标求得直线AB解析式为:4a6984794205544f5ae78d0c695c503d.png

由点C坐标(4,7)可得D点横坐标为4,

将4代入直线AB解析式得D点纵坐标为2,

故D点坐标为(4,2),CD=5,  

1c1a2e49118801fc49a0b1930ce22ad5.png

e0e455a868af0e9fc6a299be458a86e3.png

经典例题:(难度层层递进,强化方法吸收)

例1、如图,在平面直角坐标系中,已知A(-1,3),B(3,-2),则△AOB的面积为___________.

930e9e29d5a2fa1212dc00232527ff88.png

例2、如图,直线y=-x+4与x轴、y轴分别交于点A,点B,点P的坐标为(-2,2),则SPAB =___________.

6a550c5df5a0929dae88fbca73430282.png

例3、如图,直线 y=½ x+1经过点A(1,m),B(4,n),点C的坐标为(2,5),求△ABC的面积.

4f5d67172402f38d404fa59cb8ef00f0.png

例4、如图,直线ABy=x+1与x轴、y轴分别交于点A,点B,直线CDy=kx-2与x轴、y轴分别交于点C,点D,直线AB与直线CD交于点P.若SAPD =4.5,则k=__________.

dac5ba0f3bb0e2de10ed3244b0b3e34a.png

例5、如图,在平面直角坐标系中,已知A(2,4),B(6,6),C(8,2),求四边形OABC的面积.

7fd6e69501f92c02ece128045048ad44.png

例6、如图,直线 y=½ x-1与x轴、y轴分别交于AB两点,C(1,2),坐标轴上是否存在点P,使SABP =SABC ?若存在,求出点P的坐标;若不存在,请说明理由.

b6181cf65cfa9ac0a243ed82994b85fd.png

需要解析的同学可以加微信哦

fb27065a7dfc1d5405033adb58901022.png

努力不分背景,每个人都在奋斗,都有自己奋斗的目标和方式,之所以会拉开差距,是因为每个人奋斗的力度不同!世间最可怕的事,就是比你优秀的人比你更努力,更勤奋、更极致!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值