矩形函数的傅里叶变换_用图解的方法解读傅里叶变换的本质原理

前面的文章我们详细的从另一个角度来解读傅里叶变换,傅里叶变换为非周期函数的处理提供了强有力的数学工具,我们用欧拉公式将e的指数项分解为实数和虚数两部分

e6f7a2c74c8df56d76065871dcc0b26f.png

我们以矩形函数为例,这个矩形函数的T=∞,左边对应的是实数情况下的余弦波,右边对应的是复数情况下的正弦波函数,我们来看这个波形是如何与傅里叶变换对应的

4b6fb522aa56ccae80c66607e8af9dbe.png

因为矩形波在-0.5

90c864bfa1b17acc296ec34fc241eed0.png

正余弦阴影区域的面积之和就是我们要得到的傅里叶变换

a4251bf23a1b203655c3703927f5ace1.png

如下,当角频率ω=2.14时,左边图形下的面积=0.82,右边等于0,所以ω=2.14时傅里叶变换就等于0.82

3da27fd19d563464e00726330d94cd51.png

但有一个有趣的结论:ω=0时,傅里叶变换的值就是原函数曲线下的面积,如下图面积等于1,但右边的波形区域下的面积始终等于0

35670172408b42c0b8027dc3abb3cc37.png

我们继续,当ω=6.28=2π时,左边的余弦波图形是一个完整的周期函数,所以面积等于0,右边的正弦波函数图形仍然等于0

800925c2eb8439da87755514da6ae9c3.png

所以ω=0时,傅里叶变换F(ω)的值等于0

72ec13383b7ad7924b8fbc993dcea8df.png

当ω=10.8,左边正弦波下的面积是-0.14,所以F(ω)=-0.14

8cf1c7a9dd041738a65147bcde5a2077.png

当ω=22时,左边正弦波下的面积是-0.09,右边图形下的面积始终等于0,所以F(ω)=--0.09,

8ee2424efaa30e814992909a2d2d4782.png
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值