OpenAI gym 自定义环境注册方法

OpenAI gym 自定义环境注册方法

因为要自己搭一个机器人环境,要借鉴一下Fetch-PickAndPlace-v1的环境,在它的基础上改进,所以就用它来注册一个新的环境来改。

方法

写好myenv.py

这里我直接复制粘贴一下pick_and_place.py,然后把类的名字改成MyEnv.py即可。

放置

放置可以有三种方式:
将myenv.py放置到

  1. ~/anaconda3/envs/torch/lib/python3.6/site-packages/gym/envs/robotics中;
  2. 放到~/anaconda3/envs/torch/lib/python3.6/site-packages/gym/envs/robotics/fetch中;
  3. 自己在~/anaconda3/envs/torch/lib/python3.6/site-packages/gym/envs/robotics位置新建一个文件夹myenv,然后放到~/anaconda3/envs/torch/lib/python3.6/site-packages/gym/envs/robotics/myenv中。建立文件夹的目的是为了放一些xml和texture文件。

注册

注册分这样几步:

  1. 修改~/anaconda3/envs/torch/lib/python3.6/site-packages/gym/envs/robotics/下的__init__.py,根据上一步的放置方式,添加一行即可。我用的是文件夹的方式,故添加:
    from gym.envs.robotics.myenv.myenv import MyEnv
  2. 修改~/anaconda3/envs/torch/lib/python3.6/site-packages/gym/envs/下的__init__.py,添加一个register。由于我是完全在pick and place环境上面改的,我就在该文件的pick and place 的register下面照猫画虎添加了,即:
register(
    id='MyEnv{}-v0'.format(suffix),
    entry_point='gym.envs.robotics:MyEnv',
    kwargs=kwargs,
    max_episode_steps=50,
	)

然后就ok啦!

import gym

env = gym.make('MyEnv-v0')
env.reset()
for _ in range(1000):
    env.render()
    env.step(env.action_space.sample()) # take a random action

参考:
https://github.com/openai/gym/blob/master/docs/creating-environments.md

https://blog.csdn.net/qq_28753373/article/details/101060522

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
OpenAI Gym是一个用于开发和比较强化学习算法的开源工具包。它提供了许多经典的强化学习环境,让研究者能够更轻松地实验和测试自己的算法。 OpenAI Gym包含了一系列模拟环境,可以在这些环境中训练强化学习算法。这些环境包括了各种各样的问题,例如棋盘游戏、控制机器人或车辆等场景。这些问题复杂多样,要求智能体在环境中进行观察、决策和行动。 OpenAI Gym的设计使得使用者能够方便地编写、测试和比较各种不同的强化学习算法。用户可以在该工具包中选择合适的环境,并使用内置的API进行训练和测试。此外,用户还可以通过插入自定义代码来扩展现有环境或创建全新的环境OpenAI Gym还提供了一种称为“gym spaces”的概念。这是一种用于描述观察空间和动作空间的通用接口。用户只需定义环境的观察空间和动作空间的特征,就可以使用这些通用接口来处理不同类型的环境。 通过使用OpenAI Gym,研究者可以在一个统一的框架下进行强化学习算法的开发和评估。这使得算法的比较更加公平和准确。同时,OpenAI Gym的开源性质也促进了算法共享和交流,推动了强化学习领域的发展。 总之,OpenAI Gym是一个强大的工具包,为研究者提供了广泛的强化学习环境和便利的开发、测试以及比较算法的功能。它的开源性质和通用接口设计使得研究者能够更加高效地进行算法的开发和创新。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值