网络结构:
网络结构:参考:https://blog.csdn.net/langb2014/article/details/48286501
数据流:网络包括8层:前5个为卷积层,最后3层为全连接层(参考:《深度学习----caffe经典模型详解与实战》)
- 输入层:227x227x3
- 第一层:
- 第二层:
- 第三层:
- 第四层:
- 第五层:
- 第6层:
- 第7层:
- 第8层:
Alex创新点:
1.大量的数据训练:扩大训练数据的方法:平移变换,反射变换,光照和彩色变换
2.多GPU训练:多GPU拥有更高的存储能力
3.LRN局部响应归一化,此处看多处反应有争议。
4.重叠池化
5.使用了Dropout防止过拟合。
6.采用了ReLU非线性激活函数
延伸学习:
1.卷积操作:
2.padding操作
待完善部分:代码跑跑再看