重读深度学习经典论文------------AlexNet

网络结构:

网络结构:参考:https://blog.csdn.net/langb2014/article/details/48286501

 

数据流:网络包括8层:前5个为卷积层,最后3层为全连接层(参考:《深度学习----caffe经典模型详解与实战》)

  • 输入层:227x227x3
  • 第一层:
  • 第二层:

  • 第三层:
  • 第四层:
  • 第五层:
  • 第6层:
  • 第7层:
  • 第8层:

Alex创新点:

1.大量的数据训练:扩大训练数据的方法:平移变换,反射变换,光照和彩色变换

2.多GPU训练:多GPU拥有更高的存储能力

3.LRN局部响应归一化,此处看多处反应有争议。

4.重叠池化

5.使用了Dropout防止过拟合。

6.采用了ReLU非线性激活函数

延伸学习:

1.卷积操作:

卷积操作详解(填充、步长、高维卷积、卷积公式)

2.padding操作

padding操作

待完善部分:代码跑跑再看

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值