网络结构:
VGGNet 是由牛津大学VGG(Visual Geometry Group)视觉几何组Karen Simonyan和Andrew Zisserman于2014年提出。VGGNet建立了个19层的深度网络,在ILSVRC取得了定位第一,分类第二的成绩。VGGNet 网络与AlexNet很相似,有五个group的卷积,两层FC图像特征,,一层FC分类特征。
与AlnexNet相比的改进之处:1.在第一卷积层使用更小的filter尺寸和间隔2.在整个图片和多尺度上训练和测试图片。
VGGNet模型的特点:
1.3x3是最小的能够捕捉上下左右和中心概念的尺寸
2.两个3X3的卷积层是5X5,三个3x3的是7X7,可以替代大的filter尺寸,可使判决函数更具判决性,且参数会给更少。
模型分类实验:
单尺度时:
A与A-LRN 比较:A-LRN结果没有A好,说明LRN作用不大
A与B,C,D,E比较:越深越好
A与C比较:增加1X1filter ,及增加额外的非线性提升效果
C与D比较:3X3的filter比1X1filter要好,可以捕捉更大的空间特征。