重读深度学习经典论文------------VGG

网络结构:

VGGNet 是由牛津大学VGG(Visual Geometry Group)视觉几何组Karen Simonyan和Andrew Zisserman于2014年提出。VGGNet建立了个19层的深度网络,在ILSVRC取得了定位第一,分类第二的成绩。VGGNet 网络与AlexNet很相似,有五个group的卷积,两层FC图像特征,,一层FC分类特征。

与AlnexNet相比的改进之处:1.在第一卷积层使用更小的filter尺寸和间隔2.在整个图片和多尺度上训练和测试图片。

VGGNet模型的特点:

1.3x3是最小的能够捕捉上下左右和中心概念的尺寸

2.两个3X3的卷积层是5X5,三个3x3的是7X7,可以替代大的filter尺寸,可使判决函数更具判决性,且参数会给更少。

模型分类实验:

单尺度时:

A与A-LRN 比较:A-LRN结果没有A好,说明LRN作用不大

A与B,C,D,E比较:越深越好

A与C比较:增加1X1filter ,及增加额外的非线性提升效果

C与D比较:3X3的filter比1X1filter要好,可以捕捉更大的空间特征。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值