《统计学习方法》笔记--提升方法

基本思路

  提升方法是通过改变训练样本的权重,得到一系列弱分类器(基本分类器),然后通过组合这些弱分类器,构成一个强分类器。

  1. AdaBoost在每一轮如何改变训练数据的权值或概率分布?
    提高那些被前一轮弱分类器错误分类样本的权值,而降低那些被正确分类样本的权值。
  2. AdaBoost如何将弱分类器组合成一个强分类器?
    采取加权多数表决的方法,具体地,加大分类误差率小的弱分类器的权值,使其在表决中起较大的作用,减小分类误差率大的弱分类器的权值,使其在表决中起到较小的作用。
AdaBoost算法

  假设给定一个二分类的训练数据集
T = ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) T={(x_1,y_1), (x_2, y_2),...,(x_N, y_N)} T=(x1,y1),(x2,y2),...,(xN,yN)
其中,每个样本点由实例与标记组成,实例 x i ∈ X ⊆ R n x_i \in X \subseteq R^n xiXRn, 标记 y i ∈ Y = { − 1 , + 1 } y_i\in Y = \{-1, +1\} yiY={1,+1}. X X X是实例空间, Y Y Y是标记空间。
AdaBoost算法
输入:训练数据集 T = ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) T={(x_1,y_1), (x_2, y_2),...,(x_N, y_N)} T=(x1,y1),(x2,y2),...,(xN,yN),其中 x i ∈ X ⊆ R n , y i ∈ Y = { − 1 , + 1 } x_i \in X \subseteq R^n, y_i\in Y = \{-1, +1\} xiXRn,yiY={1,+1};弱学习算法;
输出:最终分类器 G ( x ) G(x) G(x)
(1). 初始化训练数据的权值分布
D 1 = ( w 11 , . . . , w 1 i , . . . , w 1 N ) , w 1 i = 1 N , i = 1 , 2 , . . . , N D_1=(w_{11},...,w_{1i},...,w_{1N}), w_{1i} = \frac{1}{N}, i=1, 2,...,N D1=(w11,...,w1i,...,w1N),w1i=N1,i=1,2,...,N
(2). 对 m = 1 , 2 , . . . , M . m=1, 2,...,M. m=1,2,...,M.
a. 使用具有权值分布 D m D_m Dm的训练数据集学习,得到基本分类器
G m ( x ) : χ → { − 1 , + 1 } G_m(x): \chi \rightarrow \{-1, +1\} Gm(x):χ{1,+1}
b. 计算 G m ( x ) G_m(x) Gm(x)在训练数据集上的分类误差率
e m = P ( G m ( x i ) ≠ y i ) = ∑ i = 1 N w m i I ( G m ( x i ) ≠ y i ) e_m = P(G_m(x_i) \not=y_i) = \sum^N_{i=1} w_{mi}I(G_m(x_i) \not= y_i) em=P(Gm(xi)=yi)=i=1NwmiI(Gm(xi)=yi)
c. 计算 G m ( x ) G_m(x) Gm(x)的系数
α m = 1 2 l o g 1 − e m e m \alpha_{m} = \frac{1}{2}log\frac{1-e_m}{e_m} αm=21logem1em
对数为自然对数
d.更新训练数据集的权值分布
D m + 1 = ( w m + 1 , 1 , . . . , w m + 1 , i , . . . , w m + 1 , N ) D_{m+1} = (w_{m+1,1}, ...,w_{m+1, i},...,w_{m+1, N}) Dm+1=(wm+1,1,...,wm+1,i,...,wm+1,N)
w m + 1 , i = w m i Z m e x p ( − α m y i G m ( x i ) ) w_{m+1, i} = \frac{w_{mi}}{Z_m}exp(-\alpha_m y_i G_m(x_i)) wm+1,i=Zmwmiexp(αmyiGm(xi))
这里, Z m Z_m Zm是规范化因子
Z m = ∑ i = 1 N w m i e x p ( − α m y i G m ( x i ) ) Z_m = \sum_{i=1}^N w_{mi}exp(-\alpha_m y_i G_m(x_i)) Zm=i=1Nwmiexp(αmyiGm(xi))
它使得 D m + 1 称 为 一 个 概 率 分 布 D_{m+1}称为一个概率分布 Dm+1
(3)构建基本分类器的线性组合
f ( x ) = ∑ m = 1 M α m G m ( x ) f(x)=\sum_{m=1}^M\alpha_m G_m(x) f(x)=m=1MαmGm(x)
得到最终分类器
G ( x ) = s i g n ( f ( x ) ) = s i g n ( ∑ m = 1 M α m G m ( x ) ) G(x)=sign(f(x))=sign\Big(\sum_{m=1}^M\alpha_mG_m(x)\Big) G(x)=sign(f(x))=sign(m=1MαmGm(x))

提升树

  以决策树为基函数的提升方法称为提升树。提升树采用前向分步算法。首先确定初始提升树 f 0 ( x ) = 0 f_0(x)=0 f0(x)=0,第 m m m步的模型是
f m ( x ) = f m − 1 ( x ) + T ( x ; θ m ) f_m(x)=f_{m-1}(x)+T(x;\theta_m) fm(x)=fm1(x)+T(x;θm)
其中, f m − 1 ( x ) f_{m-1}(x) fm1(x)为当前模型,通过经验风险极小化确定下一棵决策树的参数:
θ m = a r g m i n θ m ∑ i = 1 N L ( y i , f m − 1 ( x i ) + T ( x i ; θ m ) ) \theta_m = \underset{\theta_m}{argmin}\sum^{N}_{i=1}L(y_i, f_{m-1}(x_i)+T(x_i;\theta_m)) θm=θmargmini=1NL(yi,fm1(xi)+T(xi;θm))
   针对不同的提升树学习算法,其主要区别在于使用的损失函数不同。用平方误差损失函数的回归问题,用指数损失函数的分类问题,用一般损失函数的决策问题。

回归问题的提升树算法

  已知一个训练数据集
T = ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( 2 x N , y N ) , x i ∈ χ ⊆ R n T={(x_1, y_1), (x_2, y_2), ..., (2x_N, y_N)}, x_{i}\in \chi \subseteq R^n T=(x1,y1),(x2,y2),...,(2xN,yN),xiχRn
χ \chi χ为输入空间, y i ∈ Y ⊆ R y_i \in Y \subseteq R yiYR, Y Y Y为输出空间。如果将输入空间 χ \chi χ划分为 J J J个互不相交的区域 R 1 , R 2 , . . . , R J R_1, R_2, ..., R_J R1,R2,...,RJ, 并且在每个区域上确定输出的常量 c j c_j cj, 那么树可表示为
T ( x ; θ ) = ∑ j = 1 J c j I ( x ∈ R j ) T(x; \theta)=\sum^J_{j=1} c_jI(x\in R_j) T(x;θ)=j=1JcjI(xRj)
其中参数 θ = ( R 1 , c 1 ) , ( R 2 , c 2 ) , . . . , ( R j , c j ) \theta={(R_1, c_1), (R_2, c_2), ..., (R_j, c_j)} θ=(R1,c1),(R2,c2),...,(Rj,cj), 表示树的区域划分和各区域上的常数, J J J是回归树的复杂度即叶结点个数。
   回归问题提升树使用以下前向分步算法:
f 0 ( x ) = 0 f m ( x ) = f m − 1 ( x ) + T ( x ; θ m ) f M = ∑ m = 1 M T ( x , θ m ) \begin{aligned} & f_0(x) = 0 \\ & f_m(x)=f_{m-1}(x)+T(x;\theta_m) \\ & f_M = \sum^M_{m=1}T(x, \theta_m) \end{aligned} f0(x)=0fm(x)=fm1(x)+T(x;θm)fM=m=1MT(x,θm)
在前向分布算法的第 m m m步,给定当前模型 f m − 1 ( x ) f_{m-1}(x) fm1(x),需求解第 m m m棵树的参数:
θ m = a r g m i n θ m ∑ i = 1 N L ( y i , f m − 1 ( x i ) + T ( x i ; θ m ) ) \theta_m = \underset{\theta_m}{argmin}\sum^{N}_{i=1}L(y_i, f_{m-1}(x_i)+T(x_i;\theta_m)) θm=θmargmini=1NL(yi,fm1(xi)+T(xi;θm))
  当采用平方误差损失函数时,
L ( y , f ( x ) ) = ( y − f ( x ) ) 2 L(y, f(x)) = (y-f(x))^2 L(y,f(x))=(yf(x))2
其损失变为
L ( y , f m − 1 ( x ) + T ( x ; θ m ) ) = [ y − f m − 1 ( x ) − T ( x ; θ m ) ] 2 = [ γ − T ( x ; θ m ) ] 2 L(y, f_{m-1}(x)+T(x; \theta_m)) =[y-f_{m-1}(x)-T(x; \theta_m)]^2 =[ \gamma - T(x; \theta_m)]^2 L(y,fm1(x)+T(x;θm))=[yfm1(x)T(x;θm)]2=[γT(x;θm)]2
这里
γ = y − f m − 1 ( x ) \gamma = y - f_{m-1}(x) γ=yfm1(x)
为当前模型拟合数据的残差,对回归问题放入提升树算法来说,只需简单地拟合当前模型的残差。

梯度提升

当损失函数时平方损失和指数函数时,每一步优化是很简单的。但对一般损失函数而言,优化并不那么容易。此时可以应用梯度提升算法,它是利用最速下降法的近似方法,关键是利用损失函数的负梯度在当前模型的值
− [ ∂ L ( y , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f m − 1 ( x ) -\Big[\frac{\partial L(y, f(x_i))}{\partial f(x_i)}\Big]_{f(x)=f_{m-1}(x)} [f(xi)L(y,f(xi))]f(x)=fm1(x)
即此时的梯度值作为拟合的残差。

参考:

  1. 统计学习方法
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值