Keras中当Loss和Metrics定义都是mse时,为什么显示不同?

Keras中当Loss和Metrics定义都是mse时,为什么显示不同?

这个问题不少细心的同学都有发现,我们感觉,既然loss和metrics都是一样的计算方法时,为什么会不同呢?

实际上,造成这个微小差异的原因在于,模型评价的时候(metrics的结果)是模型训练完一个批次后,对这个批次做的评价。而显示的loss却是在训练过程中的这个批次样本产生的loss的均值。

  • 3
    点赞
  • 5
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

日月光华老师

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值