Tensorflow使用中最常见的错误——distributed 显存错误

在Tensorlfow课程答疑过程中,一个很常见的错误就是显存分配错误。

常常会包含如下的错误提示:

Interal Error:Blas GEMM launch failed.

这个错误是GPU显存分配错误,也就是说显存不足造成的。

这里有两种情况,

第一,你的数据很小,却产生这个报错。

这是由于 Tensorflow 默认申请可使用的全部显存,当tensorflow程序运行会话却没有关闭会话释放资源的时候,就会出现此错误,尤其是使用 jupyter notebook 的时候。可使用 nvidia-smi 命令查看NVIDIA显卡的显存占用情况。

解决这个问题的办法是:设置显存按需申请。

在代码(注意这里的适用版本为tensorlfow 2.0及以上版本)前加上:

gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
    tf.config.experimental.set_memory_growth(gpu, True)

重启程序或kernel运行。

第二,显存太小,确实不够了。

这时,需要减小 batch_size, 减小输入图片大小,甚至使用小的模型, 另外,对于图片的加载推荐使用tf.data.Datatset或生成器。

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读