基于内容的图像检索(4):评价指标mAP的python实现(搬砖)

本文探讨了图像检索中使用的mAP(Mean Average Precision)评价指标,通过一个例子解释了mAP的计算过程,并分析了一篇论文中mAP计算代码的细节,指出可能存在的偏差问题,以及对正确计算mAP的思考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近看了一些有关于图像实例检索的论文,文中使用mAP作为模型的评价指标,关于图像检索中的mAP的原理请看这里。

http://yongyuan.name/blog/evaluation-of-information-retrieval.html

计算mAP值的过程本质上是求PR曲线面积的过程。我们以上述引用中的第一个AP值的计算为例
其中
P的分别是[1,2/3,3/6,4/9,5/10]
R值分别是[1/5,2/5,3/5/,4/5,1]
AP的计算结果是:
(1+2/3+3/6+4/9+5/10)/ 5
除以5就是乘1/5,就是R的每段间隔,离散的曲线计算面积的近似方式。如下图
在这里插入图片描述

相关论文中是不是这么计算的呢,研究了一下一篇论文中mAP的计算方式,其mAP的计算文件在这里:

https://github.com/filipradenovic/cnnimageretrieval-pytorch/blob/master/cirtorch/utils/evaluate.py

这里面有三个函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值