Yolo入门:Yolo系列- - - - 2度冲击:yolov2

         新的YOLO版本论文全名叫“YOLO9000: Better, Faster, Stronger”(我们习惯上叫yolov2),yolov2比yolov1改进的地方有:
第一,作者使用了一系列的方法对原来的YOLO多目标检测框架进行了改进,在保持原有速度的优势之下,精度上得以提升。
第二,作者提出了一种目标分类与检测的联合训练方法,通过这种方法,YOLO9000可以同时在COCO和ImageNet数据集中进行训练,训练后的模型可以实现多达9000种物体的实时检测。

论文: YOLO9000:Better,Faster,Stronger
论文链接:https://arxiv.org/abs/1612.08242

Better

1.BN

BN的做法是 在卷积池化之后,激活函数之前,对每个数据输出进行规范化(均值为 0,方差为 1).

在这里插入图片描述
公式很简单,第一部分是 Batch内数据归一化(其中 E为Batch均值,Var为方差),Batch数据近似代表了整体训练数据。

第二部分是亮点,即引入 附加参数 γ 和 β(Scale & Shift),Why? 因为简单的归一化 相当于只使用了激活函数中近似线性的部分(如下图红色虚线),破坏了原始数据的特征分布,这会降低模型表达能力

2、High Resolution Classifier
        原来的YOLO网络在预训练的时候采用的是224*224的输入(这是因为一般预训练的分类模型都是在ImageNet数据集上进行的),然后在detection的时候采用448*448的输入,这会导致从分类模型切换到检测模型的时候,模型还要适应图像分辨率的改变。而YOLOv2则将预训练分成两步:先用224*224的输入从头开始训练网络,大概160个epoch(表示将所有训练数据循环跑160次),然后再将输入调整到448*448,再训练10个epoch。注意这两步都是在ImageNet数据集上操作。最后再在检测的数据集上fine-tuning,也就是detection的时候用448*448的图像作为输入就可以顺利过渡了。作者的实验表明这样可以提高几乎4%的MAP。

3、Convolutional With Anchor Boxes
        原来的YOLO是利用全连接层直接预测bounding box的坐标,而YOLOv2借鉴了Faster R-CNN的思想,引入anchor。首先将原网络的全连接层和最后一个pooling层去掉,使得最后的卷积层可以有更高分辨率的特征;然后缩减网络,用416*416大小的输入代替原来448*448。这样做的原因在于希望得到的特征图都有奇数大小的宽和高,奇数大小的宽和高会使得每个特征图在划分cell的时候就只有一个center cell(比如可以划分成7*7或9*9个cell,center cell只有一个,如果划分成8*8或10*10的,center cell就有4个)。为什么希望只有一个center cell呢?因为大的object一般会占据图像的中心,所以希望用一个center cell去预测,而不是4个center cell去预测。网络最终将416*416的输入变成13*13大小的feature map输出,也就是缩小比例为32。
4.Dimension Clusters(维度聚类)

        我们知道在Faster R-CNN中anchor box的大小和比例是按经验设定的,然后网络会在训练过程中调整anchor box的尺寸。但是如果一开始就能选择到合适尺寸的anchor box,那肯定可以帮助网络越好地预测detection。所以作者采用k-means的方式对训练集的bounding boxes做聚类,试图找到合适的anchor box。
另外作者发现如果采用标准的k-means(即用欧式距离来衡量差异),在box的尺寸比较大的时候其误差也更大,而我们希望的是误差和box的尺寸没有太大关系。所以通过IOU定义了如下的距离函数,使得误差和box的大小无关

jn8KHbbWqooYYaaqihhv87asRaQw011FBDDYcQNWKtoYYaaqihhkOIGrHWUEMNNdRQwyFEjVhrqKGGGmqo4RDifwHLLbjFrR3SHgAAAABJRU5ErkJggg==

Table1中作者采用的5种anchor(Cluster IOU)的Avg IOU是61,而采用9种Anchor Boxes的Faster RCNN的Avg IOU是60.9,也就是说本文仅选取5种box就能达到Faster RCNN的9中box的效果。

 

5、Direct Location prediction
作者在引入anchor box的时候遇到的第二个问题:模型不稳定,尤其是在训练刚开始的时候。作者认为这种不稳定主要来自预测box的(x,y)值。我们知道在基于region proposal的object detection算法中,是通过预测下图中的tx和ty来得到(x,y)值,也就是预测的是offset。另外关于文中的这个公式,个人认为应该把后面的减号改成加号,这样才能符合公式下面的example。这里xa和ya是anchor的坐标,wa和ha是anchor的size,x和y是坐标的预测值,tx和ty是偏移量。文中还特地举了一个例子:A prediction of tx = 1 would shift the box to the right by the width of the anchor box, a prediction of tx = -1 would shift it to the left by the same amount.

d8X8Ah8CxTbcpVw4AAAAASUVORK5CYII=

这里贴一下Faster R-CNN里面的公式,和上面这个公式将减号变成加号是一致的。

i9x1lqrTKfWfAAAAABJRU5ErkJggg==

在这里作者并没有采用直接预测offset的方法,还是沿用了YOLO算法中直接预测相对于grid cell的坐标位置的方式。
前面提到网络在最后一个卷积层输出13*13大小的feature map,然后每个cell预测5个bounding box,然后每个bounding box预测5个值:tx,ty,tw,th和to(这里的to类似YOLOv1中的confidence)。看下图,tx和ty经过sigmoid函数处理后范围在0到1之间,这样的归一化处理也使得模型训练更加稳定;cx和cy表示一个cell和图像左上角的横纵距离;pw和ph表示bounding box的宽高,这样bx和by就是cx和cy这个cell附近的anchor来预测tx和ty得到的结果。

8HyhCL477rL5MAAAAASUVORK5CYII=

如果对上面的公式不理解,可以看Figure3,首先是cx和cy,表示grid cell与图像左上角的横纵坐标距离,黑色虚线框是bounding box,蓝色矩形框就是预测的结果。

 AOVb9HFoXpIVAAAAAElFTkSuQmCCwAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

Faster

在YOLO v1中,作者采用的训练网络是基于GooleNet,这里作者将GooleNet和VGG16做了简单的对比,GooleNet在计算复杂度上要优于VGG16(8.25 billion operation VS 30.69 billion operation),但是前者在ImageNet上的top-5准确率要稍低于后者(88% VS 90%)。而在YOLO v2中,作者采用了新的分类模型作为基础网络,那就是Darknet-19。

1、Darknet-19
Table6是最后的网络结构:Darknet-19只需要5.58 billion operation。这个网络包含19个卷积层和5个max pooling层,而在YOLO v1中采用的GooleNet,包含24个卷积层和2个全连接层,因此Darknet-19整体上卷积卷积操作比YOLO v1中用的GoogleNet要少,这是计算量减少的关键。最后用average pooling层代替全连接层进行预测。这个网络在ImageNet上取得了top-5的91.2%的准确率。

HmNKZgxjGMMYxvCpYUzJjGEMYxjDGD41jCmZMYxhDGMYw6eGMSUzhjGMYQxj+NQwpmTGMIYxjGEMnxr+D1VKX9md7clLAAAAAElFTkSuQmCCwAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

2、Training for Classification
这里的2和3部分在前面有提到,就是训练处理的小trick。这里的training for classification都是在ImageNet上进行预训练,主要分两步:1、从头开始训练Darknet-19,数据集是ImageNet,训练160个epoch,输入图像的大小是224*224,初始学习率为0.1。另外在训练的时候采用了标准的数据增加方式比如随机裁剪,旋转以及色度,亮度的调整等。2、再fine-tuning 网络,这时候采用448*448的输入,参数的除了epoch和learning rate改变外,其他都没变,这里learning rate改为0.001,并训练10个epoch。结果表明fine-tuning后的top-1准确率为76.5%,top-5准确率为93.3%,而如果按照原来的训练方式,Darknet-19的top-1准确率是72.9%,top-5准确率为91.2%。因此可以看出第1,2两步分别从网络结构和训练方式两方面入手提高了主网络的分类准确率。

3、Training for Detection
在前面第2步之后,就开始把网络移植到detection,并开始基于检测的数据再进行fine-tuning。首先把最后一个卷积层去掉,然后添加3个3*3的卷积层,每个卷积层有1024个filter,而且每个后面都连接一个1*1的卷积层,1*1卷积的filter个数根据需要检测的类来定。比如对于VOC数据,由于每个grid cell我们需要预测5个box,每个box有5个坐标值和20个类别值,所以每个grid cell有125个filter(与YOLOv1不同,在YOLOv1中每个grid cell有30个filter,还记得那个7*7*30的矩阵吗,而且在YOLOv1中,类别概率是由grid cell来预测的,也就是说一个grid cell对应的两个box的类别概率是一样的,但是在YOLOv2中,类别概率是属于box的,每个box对应一个类别概率,而不是由grid cell决定,因此这边每个box对应25个预测值(5个坐标加20个类别值),而在YOLOv1中一个grid cell的两个box的20个类别值是一样的)。另外作者还提到将最后一个3*3*512的卷积层和倒数第二个卷积层相连。最后作者在检测数据集上fine tune这个预训练模型160个epoch,学习率采用0.001,并且在第60和90epoch的时候将学习率除以10,weight decay采用0.0005。

Stronger

带标注的检测数据集量比较少,而带标注的分类数据集量比较大,因此YOLO9000主要通过结合分类和检测数据集使得训练得到的检测模型可以检测约9000类物体。
一方面要构造数据集(采用WordTree解决),另一方面要解决模型训练问题(采用Joint classification and detection)。
 

参考文章:

论文笔记1 --(YOLOv2)YOLO9000:Better,Faster,Stronger_对角巷-CSDN博客_yolo9000论文YOLO v2算法详解_AI之路-CSDN博客_yolov2论文笔记1 --(YOLOv2)YOLO9000:Better,Faster,Stronger_对角巷-CSDN博客_yolo9000论文

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值