Text-To-Speech (TTS) 模型应用

本文介绍了Text-To-Speech(TTS)技术,它将文本转化为语音,广泛应用于辅助阅读、语音助手等领域。文章详细阐述了TTS系统的组成部分,并通过引入相关库和模块,演示了如何创建和执行一个文本转语音的处理管道,生成合成语音。同时,讨论了TTS技术的潜在改进点,如叠词发音和语音语调。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        Text-To-Speech(TTS),是一个文本合成语音技术,它将文本信息转换为口语,使计算机生成的语音听起来无限接近人类说话的声音。它的应用场景非常广,包括辅助阅读、语音助手、导航系统、教育工具、信息播报,消息通知等等。系统主要包含以下组件:文本分析器、发音引擎、声音合成器、声音模型和语音库等。语音合成技术发展到现在已经非常成熟了,但在极个别情况下还有需要完善的地方,比如叠词的发音、中外文混杂,以及语音语调方面等。

        首先导入依赖库,mediainfo 用于获取音频文件的元数据信息,如文件格式、采样率、声道数、持续时间等;modelscope 模块的 OutputKeys 定义了模型输出结果中关键数据字段名称的枚举类或常量集合;modelscope 模块的 pipeline 指代一种将多个处理步骤(如数据预处理、模型推理、后处理等)组合在一起,形成一个端到端工作流;modelscope 模块的 Tasks 定义了预设任务类型的枚举类和常量,在机器学习和深度学习过程中,定义了模型所要解决的具体问题或应用领域,如分类、回归、文本摘要、文本生成、语音识别、语音合成等。

from pydub.utils import mediainfo
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

        接下来创建了一个基于 modelscope.pipelines 模块的处理管道实例,并将其赋值给变量pipe。创建管道时指定了两个参数,task 参数设置从 modelscope.utils.constant.Tasks 中导入常量 Tasks.text_to_speech,代表当前管道需要执行的任务类型为文本转语音,model 参数表示用于执行该任务的模型文件或模型配置的加载路径。

pipe = pipeline(task=Tasks.text_to_speech, model=model_tts_path)

        然后调用并执行任务,input 参数代表输入的文本,及待合成的文本信息,voice 参数为合成语音时的特征,如发音人风格、语速、音高等,具体效果取决于模型和项目的实现,可能是字符串、数字、字典或其他复合类型,用来描述合成语音所需的声音特性。执行完成后,管道会按照之前设定的任务类型和关联模型,对输入文本和语音参数进行处理,生成合成的语音数据及可能的其他附属相关信息,结果被存储在变量 output 中。

output = pipe(input='今天是个好日子', voice='zhizhe_emo')

        最后创建了一个临时文件,并在代码块结束后自动关闭文件。delete=False 参数表示在退出with 代码块后不立即删除该临时文件;write 方法从 output 字典中取出 OutputKeys.OUTPUT_WAV 值;flush 方法强制将缓冲区中的数据立即写入磁盘,避免因程序异常终止或后续操作提前导致数据丢失;seek 方法将文件指针重置到文件起始位置,便于后续代码读取临时文件。

with tempfile.NamedTemporaryFile(delete=False) as temp_file:
    temp_file.write(output[OutputKeys.OUTPUT_WAV])
    temp_file.flush()
    temp_file.seek(0)

        在这里我采用 mediainfo 函数来获取临时文件 temp_file 的音频元数据信息,如文件格式、采样率、声道数、音频时长等;duration_seconds 变量为合成音频的长度。

audio_info = mediainfo(temp_file.name)
duration_seconds = audio_info['duration']

        总结一下,Text-To-Speech 是目前比较经济实惠的文生语音解决方案,核心代码就那么几行,效果完全能够满足绝大部分的业务场景,用吧。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

厉力文武

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值