为什么要对信号加窗:https://blog.csdn.net/weixin_38313518/article/details/78106150?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase
简单的说汉明窗就是个函数,它的形状像窗,所以类似的函数都叫做窗函数。
W(n,α ) = (1 -α ) - α cos(2PIn/(N-1)),0≦n≦N-1
加窗只适用于关注的频率在各时间点上分布比较均匀的信号。加窗一般是滤波器,通带内的系统函数不一定是常数值,加窗在时域进行,窗函数的频域形状是一个窗,把带外的分量滤除,相当于低通滤波器,若是矩形滤波器,相当于低通滤波,把带外高频分量直接滤除,另一方面,采样在不同的采样采样率下对信号的近似程度不一样,但是加窗是直接截取一段。
采集到的周期为非整数时,端点是不连续的。 这些不连续片段在FFT中显示为高频成分。这些高频成分不存在于原信号中。 这些频率可能远高于奈奎斯特频率,在0~ 采样率的一半的频率区间内产生混叠。 使用FFT获得的频率,不是原信号的实际频率,而是一个改变过的频率。 类似于某个频率的能量泄漏至其他频率。 这种现象叫做 频谱泄漏。频率泄漏使好的频谱线扩散到更宽的信号范围中。
加窗包括将时间记录乘以有限长度的窗,窗的幅值逐渐变小,在边沿处为0。 加窗的结果是尽可能呈现出一个连续的波形,减少剧烈的变化。 这种方法也叫应用一个加窗。
- Hamming窗和Hanning窗都有正弦波的外形。 两个窗都会产生宽波峰低旁瓣的结果。Hanning窗在窗口的两端都为0,杜绝了所有不连续性。 Hamming窗的窗口两端不为0,信号中仍然会呈现不连续性。Hamming窗擅长减少最近的旁瓣,但是不擅长减少其他旁瓣。Hamming窗和Hanning适用于对频率精度要求较高对旁瓣要求较低的噪声测量。