凸优化学习笔记

1.凸集:一个集合区域内任意两点的直线连接都在这个区域内,则这个集合为凸集。比如:扇形、缺失了某个边的矩形就不属于凸集。

2.超平面、半超平面

超平面:a^{T}x=b,半超平面:a^{^{T}}x\leq b,a^{T}x\geq b或者a^{T}x\geq b。其中超平面在二维空间就是直线。超平面和半超平面可以组成一个多面体,构成凸集。

3.保凸运算:交、仿射变换、透视变换

交:比如超平面之间的交集是个凸集;

仿射变换:f(x) = a x +b,其中a是个矩阵,仿射变换可以经过平移、旋转、缩放。如果x是个凸集,则f(x)一定是凸集;反之,如果f(x)是凸集,则x也一定是凸集。

透视变换:R^{n+1}\rightarrow R^{n},也就是把最后一维除以本身变成1,然后再把1舍去。如果x是凸集,则f(x)是凸集;反之,则不一定成立。

投射函数:为仿射变换和透视变换的复合。f(x)=(ax+b)/(c^{T}x+d),其中c^{T}x+d> 0,如果c^{T}=0,d/0则是一般的仿射变换。

4.分割超平面、支撑超平面

如果两个凸集之间没有交集,则一定会有一个分割超平面将它们隔开,也就是对于这两个凸集会有a^{T}x\leq ba^{T}x\geq b。但是反之若两个凸集存在分割超平面,则它们不相交是假命题。加上限制,至少有一个是开集,则命题成立。因为等式中取了等号,如果遇到某些临界的等号值,则可能就相交了。

支撑超平面:对于集合上某个点的值存在小于等于ax+b,则这个点有支撑超平面,对于凸集上每个点都存在支撑超平面;而反之,如果某个集合每个点都存在支撑超平面,则这个集合不一定是凸集,要加上一个限制,闭的非中空。

5.凸函数

某个函数满足它的割线总是在它的上方,则这个函数为凸函数。对于两点(x,f(x)),(y,f(y)),则存在f(\theta x+(1-\theta )y)\leq \theta f(x)+(1-\theta )f(y)

全局下估计:对于凸集上的某点存在f(y)\geq f(x)+f{}'(x)(y-x),这个跟支撑超平面的理解是一样的,凸函数上的点的值大于或等于该点切线上的值。本质上,凸函数的一阶泰勒近似是它的全局下估计。反之,如果一个函数的一阶泰勒近似总是它的全局下估计,则这个函数是凸函数,这可以从局部到全局。

6.Jensen不等式 

根据凸函数的概念:f(\theta _{1}x_{1}+....+\theta _{k}x_{k})\leq \theta _{1}f(x_{1})+\theta _{k}f(x_{k}),再微积分一下对于在S凸集域中,满足thea之和为1。进而f(E(X))<=E(f(x)),可以用来解决很多问题。

7.凸函数的一些性质

g(x)=w1*f1(x)+w2*f2(x)+...+wn*fn(x),如果f(x)都为凸函数,且w非负,则g(x)也为凸函数;

如果f(x)为凸函数,则它的仿射f(ax+b)也为凸函数;

如果各fi(x)为凸函数,则f(x)=max(f1(x),f2(x),...,fn(x))也为凸函数,如果f1(x),f2(x),...,fn(x)为连续状态的话,就是对f(x)=sup(g(x))的g(x)求上确界,也是一个凸函数。一系列函数的逐点求上确界其实是函数的交集(其中上确界是凸的,下确界是凹的)。

8.凸优化和对偶函数

对于凸优化问题,我们化为求f0(x)的最小值,其中限制条件为fi(x)<=0,gi(x)=0,且fi(x)为凸函数,g(x)为仿射函数,则利用拉格朗日 L = f0(x) + \lambda i fi(x) + \nu igi(x),对\lambda而言,L为它的仿射函数,对\nu而言,L也为它的仿射函数。

对偶函数转化为:g(\lambda ,\nu )=infL(x,\lambda ,\nu ) = inf(f0(x)+\sum\lambda f(x)+\sum \nu h(x) ),逐点求下确界,则这个函数为一个凹函数,g<=p*,取等号时,则可以取到最大值。对偶函数往往取不到等号。

9.鞍点

先得到一个凹函数,再逐点求上确界 。

 f(x,y) \leqslant max_{x}f(x,y),则,min_{y}f(x,y)\leqslant min_{y}max_{x}f(x,y),则max_{x}min_{y}f(x,y)\leqslant min_{y}max_{x}f(x,y)。对偶问题,本质是求对偶函数的最大值,因此这个最大值小于等于最优值,往往取不到等号。

10.强对偶条件(KKT条件)

fi(x)<=0,hi(x)=0,\lambda \geqslant 0\lambda f(x) =0,\bigtriangledown f0(x)+\sum \lambda \bigtriangledown fi(x)+\sum \nu \bigtriangledown hi(x) =0。其中最小二乘是满足强对偶条件的。

最小二乘法的f(x)=x^{T}xstd:Ax=b;L = x^{T}x + \nu ^{T}(Ax-b)其中最小二乘法是先求出对x偏导为0时x的值,带入x到L中,得到g(v),再对v求偏导,凹函数一定有为0的值,则得到v的值,再带到刚刚的x中,再得到x的值。

11.共轭函数

f(y) = sup(y^{T}x-f(x)),这一定是个凸函数 。仿射函数的上确界

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值