PRML || 1. 前言 || 1.1 机器学习概述

本文是Bishop《模式识别与机器学习》第一章读书笔记,重点介绍了机器学习作为模式识别的有效手段,通过多项式回归案例分析了机器学习在模式识别中的应用,包括数据准备、拟合效果的评价和改进。文中强调了泛化能力和防止过拟合的重要性,并探讨了正则化技术在控制过拟合中的作用。
摘要由CSDN通过智能技术生成
模式识别与机器学习-读书笔记

第一章 机器学习概述(I)


数据模式搜索问题是一个基础性的问题,有着悠久而成功的历史。

  • 16世纪对第谷布拉赫的广泛天文观测使约翰内斯开普勒发现了行星运动的经验定律,从而为古典力学的发展提供了跳板。

  • 原子光谱中正则性的发现在20世纪初量子物理学的发展和验证中起到了关键作用。

模式识别领域涉及通过使用计算机算法自动发现数据中的规则,并利用这些规则采取行动,例如将数据分类。

例 [手写字体] 如图所示。每个数字对应于28×28像素的图像,因此可以由包含784个实数的向量 x \mathbf{x}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>