第八章 向量代数与空间解析几何
第一节 向量及其线性运算
第二节 数量积 向量积 混合积
一、两向量的数量积
数量积满足交换律、分配律,不满足结合律
两向量夹角:
二、两向量的向量积
向量积满足分配律,不满足交换律、结合律。
三、向量的混合积
,记做
第三节 平面及其方程
一、曲面方程与空间直线
mathematica二元显函数画图:
mathematica三元隐函数等式画图:
mathematica空间曲线画图,参数方程:
二、平面的点法式方程
。
是平面上的某个点,
是法向量。
三、平面的一般方程
平面的一般方程:
平面的截距式方程:
四、两平面的夹角
两平面垂直:
两平面平行或重合:
第四节 空间直线及其方程
一、空间直线的一般方程
二、空间直线的对称式方程与参数方程
对称式方程,也叫点向式方程
直线的参数方程:
三、两直线的夹角
根据方向向量计算夹角:
四、直线与平面的夹角
第五节 曲面及其方程
第六节 空间曲线及其方程
一、空间曲线的一般方程
二、空间曲线的参数方程
三、空间曲线在坐标面上的投影
第九章 多元函数微分法及其应用
第十章 重积分
第十一章 曲线积分与曲面积分
第十二章 无穷级数
第一节 常数项级数概念和性质
等比级数
调和级数
级数收敛的必要条件是一般项的极限是0
三、柯西审敛原理
柯西审敛原理:级数收敛的充分必要条件是:对于任意给定的正数
,总存在正整数
,使得当
时,对于任意的正整数
,都有
成立。
第二节 常数项级数的审敛法
一、正项级数及其审敛法
直接求和求极限,极限存在说明收敛。
比较审敛法(两个级数做对比,已知其中一个级数是发散还是收敛):发散=胖子,收敛=瘦子。
比值审敛法,也叫达朗贝尔判别法。自己和自己比较。。当
时收敛。当
时发散。当
时,可能发散可能收敛。
根值审敛法,柯西判别法
极限审敛法:
1.,此级数发散,否则收敛。
2.如果,
,此级数收敛。
二、交错级数及其审敛法
交错级数,每一项都是正负交替的。
莱布尼茨定理:如果交错级数满足条件:
1.;
2.,
那么级数收敛,且其和,其余项的
。
三、绝对收敛和条件收敛
绝对收敛是每项取绝对值。如果
收敛,那么
也收敛。
四、绝对收敛级数的性质
第三节 幂级数
二、幂级数及其收敛性
阿贝尔定理:如果级数当
(
)时收敛,那么适合不等式
的一切
使这幂级数绝对收敛。反之,如果级数
当
(
)时发散,那么适合不等式
的一切
使这幂级数发散。
这是幂级数,
,
收敛半径
三、幂级数的运算
第四节 函数展开成幂级数
第五节 函数的幂级数展开式的应用
一、近似计算
二、微分方程的幂级数解法
三、欧拉公式
欧拉公式:
这两个式子也叫欧拉公式:
第六节 函数项级数的一致收敛性及一致收敛级数的基本性质
一、函数项级数的一致收敛性
第七节 傅里叶级数
第八节 一般周期函数里的傅里叶级数
latex公式1latex公式2