第八章 向量代数与空间解析几何

第一节 向量及其线性运算

高等数学(同济大学数学科学学院)第8版下册(更新中)_bc

高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_02

高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_03

第二节 数量积 向量积 混合积

一、两向量的数量积

数量积满足交换律、分配律,不满足结合律

两向量夹角:高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_04

二、两向量的向量积

向量积满足分配律,不满足交换律、结合律。

三、向量的混合积

高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_05,记做高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_06

第三节 平面及其方程

一、曲面方程与空间直线

mathematica二元显函数画图:

ClearAll["Global`*"];Plot3D[Sin[x + y^2], {x, -3, 3}, {y, -2, 2}]
  • 1.

高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_07


mathematica三元隐函数等式画图:

ClearAll["Global`*"];ContourPlot3D[
 x^2 + y^2 + z^3 - 1 == 0 , {x, -1, 1}, {y, -1, 1}, {z, -1, 1}]
  • 1.
  • 2.

高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_08


mathematica空间曲线画图,参数方程:

ClearAll["Global`*"]; ParametricPlot3D[{Sin[u], Cos[u], u/10}, {u, 0, 
  20}]
  • 1.
  • 2.

高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_09

二、平面的点法式方程

高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_10高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_11是平面上的某个点,高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_12是法向量。

三、平面的一般方程

平面的一般方程:高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_13

平面的截距式方程:高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_14

四、两平面的夹角

高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_15

两平面垂直:高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_16
两平面平行或重合:高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_17

第四节 空间直线及其方程

一、空间直线的一般方程

高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_18

二、空间直线的对称式方程与参数方程

对称式方程,也叫点向式方程

高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_19


直线的参数方程:

高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_20

三、两直线的夹角

根据方向向量计算夹角:

高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_21

四、直线与平面的夹角

高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_22

第五节 曲面及其方程

第六节 空间曲线及其方程

一、空间曲线的一般方程
二、空间曲线的参数方程
三、空间曲线在坐标面上的投影

第九章 多元函数微分法及其应用

第十章 重积分

第十一章 曲线积分与曲面积分

第十二章 无穷级数

第一节 常数项级数概念和性质

等比级数
调和级数

级数收敛的必要条件是一般项高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_23的极限是0

三、柯西审敛原理

柯西审敛原理:级数高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_24收敛的充分必要条件是:对于任意给定的正数高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_25,总存在正整数高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_26,使得当高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_27时,对于任意的正整数高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_28,都有
高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_29
成立。

第二节 常数项级数的审敛法

一、正项级数及其审敛法

直接求和求极限,极限存在说明收敛。

比较审敛法(两个级数做对比,已知其中一个级数是发散还是收敛):发散=胖子,收敛=瘦子。

比值审敛法,也叫达朗贝尔判别法。自己和自己比较。高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_30。当高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_31时收敛。当高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_32时发散。当高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_33时,可能发散可能收敛。

根值审敛法,柯西判别法

极限审敛法:
1.高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_34,此级数发散,否则收敛。
2.如果高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_35高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_36,此级数收敛。

二、交错级数及其审敛法

交错级数,每一项都是正负交替的。

莱布尼茨定理:如果交错级数高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_37满足条件:
1.高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_38;
2.高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_39,
那么级数收敛,且其和高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_40,其余项的高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_41

三、绝对收敛和条件收敛

绝对收敛是高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_23每项取绝对值。如果高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_43收敛,那么高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_24也收敛。

四、绝对收敛级数的性质

第三节 幂级数

二、幂级数及其收敛性

阿贝尔定理:如果级数高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_45高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_46高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_47)时收敛,那么适合不等式高等数学(同济大学数学科学学院)第8版下册(更新中)_bc_48的一切高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_49使这幂级数绝对收敛。反之,如果级数高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_45高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_46高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_47)时发散,那么适合不等式高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_53的一切高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_49使这幂级数发散。

高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_45这是幂级数,高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_56
收敛半径高等数学(同济大学数学科学学院)第8版下册(更新中)_解析几何_57

三、幂级数的运算

第四节 函数展开成幂级数

第五节 函数的幂级数展开式的应用

一、近似计算
二、微分方程的幂级数解法
三、欧拉公式

欧拉公式:高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_58
这两个式子也叫欧拉公式:高等数学(同济大学数学科学学院)第8版下册(更新中)_高等数学_59

第六节 函数项级数的一致收敛性及一致收敛级数的基本性质

一、函数项级数的一致收敛性

第七节 傅里叶级数

第八节 一般周期函数里的傅里叶级数

latex公式1latex公式2