高数下复习(下半部分)
前言
给高数复习留下回忆
一、二重积分:
几何意义:表示面积和质量。
形式:
计算方法:
1.对称加奇。
2.密度项为常数—利用几何意义。
3.正常运算(找范围变成两个定积分):
具体:先画图,再确定切割方法。
图像上的函数应是下面(左边)的函数到上面(右边)的函数。
考点:改变积分的次序。
注意:D为圆时用极坐标。
二、三重积分:
1.几何意义
体积和质量。
2.形式:
计算方法:1.对称加奇。2.体积。3.正常计算。
正常计算:化为定积分+二重积分
具体方法:(1)投影法【屋顶、地板、占地面积】
三、重积分的应用:
归纳:在曲线积分前都是平面或者是立体。
介绍特殊坐标系:球坐标。
四、第一类曲线积分:
基本概念:表示空间中的一段曲线。
算法:1.被积函数是常数则变为弧长计算。2.对称加奇。3.利用曲线方程变为定积分。
此处重点介绍法三:
其中要注意d(s)的代换公式(显函数)。
曲线(面)积分的特殊点:能改变被积函数。
五、第二类曲线积分:
算法:
1.简单的情况(利用L方程化为定积分,第一类)2.复杂情况(利用格林公式化为二重积分)3.不是质量不能使用对称加奇。
难点来啦?!!!!
格林公式:
一定是针对封闭图形(不封闭自己创造封闭)。
六、第一类曲面积分:
算法:老三样。
重点:利用显函数方程化为定积分
一定要化成显函数!一定要化成显函数!一定要化成显函数!重要的事情说三遍。
显函数:Z=()X+()Y。
六、第二类曲面积分:
最后一个积分了!!!!!
正负判断:坐标轴的正方向为正;坐标轴的负方向为负。
简单时:直接代换成为一元或二元,用多重积分。
高斯公式(复杂时):
七、常数级数:
常数项级数汇总:
八、常数级数审敛法:
审敛法1
(高中):略。
审敛法2
注意:只有当lim u = 0时才有可能收敛,才有判断价值。
审敛法3:比较审敛法(正项级数专用)
背!!!:
审敛法4:比值审敛法
审敛法5:交错级数专用
lim u = 0---收敛。
九、幂级数和傅里叶级数:
两个考点:
1.求收敛半径:
公式:
背住几个常用展开: