NMT十篇必读论文(二)Neural Machine Translation of Rare Words with Subword Units

清华大学NLP整理的神经机器翻译reading list中提到了十篇必读论文

https://github.com/THUNLP-MT/MT-Reading-List

 

GitHub地址:https://github.com/rsennrich/subword-nmt

本文介绍了一种处理oov词的方法(out-of-vocabulary words),将未知词表示为其子词的序列

首先,用字符词汇表初始化符号词汇表,并将每个单词表示为一个字符序列,加上一个特殊的词尾符号'·',这允许我们在翻译后恢复原始的标记。 我们迭代地计算所有符号对,并用新符号“AB”替换最频繁对('A','B')的每次出现。 每个合并操作都会生成一个代表字符n-gram的新符号。 频繁的字符n-gram(或整个单词)最终合并为单个符号,最终的符号词汇量大小等于初始词汇表的大小,加上合并操作的数量 - 后者是算法的唯一超参数。

 

作者还附加了一段示例代码,表示其从字典{‘low’, ‘lowest’, ‘newer’, ‘wider’}中学到的合并字对

import re, collections
def get_stats(vocab):
    pairs = collections.defaultdict(int)
    for word, freq in vocab.items():
        symbols = word.split()
        for i in range(len(symbols)-1):
            pairs[symbols[i],symbols[i+1]] += freq
    return pairs

def merge_vocab(pair, v_in):
    v_out = {}
    bigram = re.escape(' '.join(pair))
    p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
    for word in v_in:
        w_out = p.sub(''.join(pair), word)
        v_out[w_out] = v_in[word]
    return v_out

vocab = {'l o w </w>' : 5, 'l o w e r </w>' : 2,
'n e w e s t </w>':6, 'w i d e s t </w>':3}
num_merges = 10
for i in range(num_merges):
    pairs = get_stats(vocab)
    best = max(pairs, key=pairs.get)
    vocab = merge_vocab(best, vocab)
    print(best)

最终输出的出现频率最高的前十个字对为:

('e', 's')
('es', 't')
('est', '</w>')
('l', 'o')
('lo', 'w')
('n', 'e')
('ne', 'w')
('new', 'est</w>')
('low', '</w>')
('w', 'i')

通过一系列的实验对比,说明了这种方法确实提高了翻译的质量

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
The code you provided defines a named tuple `Hypothesis` with two fields, `value` and `score`. This is a convenient way to store and manipulate hypotheses in the context of sequence-to-sequence models. The `NMT` class is a PyTorch module that implements a simple neural machine translation model. It consists of a bidirectional LSTM encoder, a unidirectional LSTM decoder, and a global attention mechanism based on Luong et al. (2015). Here's a breakdown of the code: ```python from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F Hypothesis = namedtuple('Hypothesis', ['value', 'score']) class NMT(nn.Module): def __init__(self, src_vocab_size, tgt_vocab_size, emb_size, hidden_size): super(NMT, self).__init__() self.src_embed = nn.Embedding(src_vocab_size, emb_size) self.tgt_embed = nn.Embedding(tgt_vocab_size, emb_size) self.encoder = nn.LSTM(emb_size, hidden_size, bidirectional=True) self.decoder = nn.LSTMCell(emb_size + hidden_size, hidden_size) self.attention = nn.Linear(hidden_size * 2, hidden_size) self.out = nn.Linear(hidden_size, tgt_vocab_size) self.hidden_size = hidden_size def forward(self, src, tgt): batch_size = src.size(0) src_len = src.size(1) tgt_len = tgt.size(1) # Encode the source sentence src_embedded = self.src_embed(src) encoder_outputs, (last_hidden, last_cell) = self.encoder(src_embedded) # Initialize the decoder states decoder_hidden = last_hidden.view(batch_size, self.hidden_size) decoder_cell = last_cell.view(batch_size, self.hidden_size) # Initialize the attention context vector context = torch.zeros(batch_size, self.hidden_size, device=src.device) # Initialize the output scores outputs = torch.zeros(batch_size, tgt_len, self.hidden_size, device=src.device) # Decode the target sentence for t in range(tgt_len): tgt_embedded = self.tgt_embed(tgt[:, t]) decoder_input = torch.cat([tgt_embedded, context], dim=1) decoder_hidden, decoder_cell = self.decoder(decoder_input, (decoder_hidden, decoder_cell)) attention_scores = self.attention(encoder_outputs) attention_weights = F.softmax(torch.bmm(attention_scores, decoder_hidden.unsqueeze(2)).squeeze(2), dim=1) context = torch.bmm(attention_weights.unsqueeze(1), encoder_outputs).squeeze(1) output = self.out(decoder_hidden) outputs[:, t] = output return outputs ``` The `__init__` method initializes the model parameters and layers. It takes four arguments: - `src_vocab_size`: the size of the source vocabulary - `tgt_vocab_size`: the size of the target vocabulary - `emb_size`: the size of the word embeddings - `hidden_size`: the size of the encoder and decoder hidden states The model has four main components: - `src_embed`: an embedding layer for the source sentence - `tgt_embed`: an embedding layer for the target sentence - `encoder`: a bidirectional LSTM encoder that encodes the source sentence - `decoder`: a unidirectional LSTM decoder that generates the target sentence The attention mechanism is implemented in the `forward` method. It takes two arguments: - `src`: the source sentence tensor of shape `(batch_size, src_len)` - `tgt`: the target sentence tensor of shape `(batch_size, tgt_len)` The method first encodes the source sentence using the bidirectional LSTM encoder. The encoder outputs and final hidden and cell states are stored in `encoder_outputs`, `last_hidden`, and `last_cell`, respectively. The decoder is initialized with the final hidden and cell states of the encoder. At each time step, the decoder takes as input the embedded target word and the context vector, which is a weighted sum of the encoder outputs based on the attention scores. The decoder output and hidden and cell states are updated using the LSTMCell module. The attention scores are calculated by applying a linear transform to the concatenated decoder hidden state and encoder outputs, followed by a softmax activation. The attention weights are used to compute the context vector as a weighted sum of the encoder outputs. Finally, the decoder hidden state is passed through a linear layer to produce the output scores for each target word in the sequence. The output scores are stored in the `outputs` tensor and returned by the method.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值