VAE变分自动编码器

这篇博客深入探讨了变分推断在VAE(变分自编码器)中的应用。文章介绍了VAE的采样生成过程,包括Encoder生成均值和方差,Decoder在高斯隐空间中进行样本还原,以及对抗学习中对重构损失和KL散度的平衡。作者指出,VAE内部存在一种对抗性的训练过程,同时提供了相关代码链接和参考资料以供进一步学习。
摘要由CSDN通过智能技术生成

总的结构

变分推断的理解可以看 博客
在这里插入图片描述

采样生成过程

在这里插入图片描述

  • Encoder: 生成均值和方差,
  • decoder: 在高斯隐空间中采样出的样本进行还原
  • 对抗:方差为1的约束 与 重构损失 ∣ ∣ X − X ^ ∣ ∣ || X-\hat{X}|| ∣∣XX^∣∣为0的约束的对抗。

两个方面,一个是让latent variable 服从
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

对抗: 重构的过程是希望没噪声的,而 KL loss 则希望有高斯噪声的,两者是对立的。所以,VAE 跟 GAN 一样,内部其实是包含了一个对抗的过程,只不过它们两者是混合起来,共同进化的。
代码: https://github.com/bojone/vae

变分推断与VAE关系: https://cloud.tencent.com/developer/article/1586621

参考: https://zhuanlan.zhihu.com/p/34998569

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值