线上OJ:
核心思想:
解法一、这类题可采用动态规划的思想。
令 dp[i][j] 表示(从1号开始)经过 j 次传球后,球在i号手里的方案总数。
由于球可以从前后两个方向传来,所以
d
p
[
i
]
[
j
]
=
d
p
[
i
−
1
]
[
j
−
1
]
+
d
p
[
i
+
1
]
[
j
−
1
]
dp[i][j] = dp[i-1][j-1]+dp[i+1][j-1]
dp[i][j]=dp[i−1][j−1]+dp[i+1][j−1]。即:第 i 个点 j 次的方案总数等于前后两个点 j-1 次的方案数总和。
#include <bits/stdc++.h>
using namespace std;
const int N = 35;
int n, m, dp[N][N]; // dp[i][j]表示(从1号开始)经过 j 次传球后,球在i号手里的方案总数 dp[i][j] = dp[i-1][j-1]+dp[i+1][j-1]
int main()
{
scanf("%d %d", &n, &m);
memset(dp, 0, sizeof(dp));
dp[1][0] = 1; // 从1号开始,经过0次传球后,球在1号手里的方案总数。只有1种,就是不传
for(int j = 1; j <= m; j++)
for(int i = 1; i <= n; i++)
{
int pre, nxt;
// 处理前后两个点的坐标边界
i == 1 ? pre = n : pre = i-1;
i == n ? nxt = 1 : nxt = i+1;
dp[i][j] = dp[pre][j-1] + dp[nxt][j-1]; // 核心语句第i个点j次的方案总数等于前后两个点j-1次的方案数总和
}
printf("%d\n", dp[1][m]);
return 0;
}
解法二、深搜(回溯+记忆化搜索)
这道题也可以采用深搜dfs来完成。但是一定要加上记忆化搜索,否则会Time limit。
#include <bits/stdc++.h>
using namespace std;
const int N = 35;
int n, m, ans, f[N][N]; // f[i][j]表示(从1号开始)经过 j 次传球后,球在i号手里的方案总数
// (回溯型)深搜(+记忆化搜索)
int dfs(int i, int j) // i表示当前在i#手里,j表示经过了j次传球
{
if(f[i][j] != -1) return f[i][j]; // (记忆化搜索)如果已经计算过,则直接返回
if(j == m)
{
if(i == 1) return 1; // 处理边界:当传了m次时,如果正好在1号,则返回1,表示这是一个有效的方案数
else return 0; // 否则,返回0
}
int pre, nxt;
// 处理前后两个点的坐标边界
i == 1 ? pre = n : pre = i-1;
i == n ? nxt = 1 : nxt = i+1;
f[i][j] = dfs(pre, j+1) + dfs(nxt, j+1); // 回溯。f[i][j]为向两边继续传球能成功成功的方案数总和
return f[i][j];
}
int main()
{
scanf("%d %d", &n, &m);
memset(f, -1, sizeof(f));
printf("%d\n", dfs(1, 0)); // dfs的初始状态为:球在1号手里,此时0次传球
return 0;
}