2008NOIP普及组真题 3. 传球游戏

线上OJ:

1944【08NOIP普及组】传球游戏

核心思想:
解法一、这类题可采用动态规划的思想。

令 dp[i][j] 表示(从1号开始)经过 j 次传球后,球在i号手里的方案总数。
由于球可以从前后两个方向传来,所以 d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + d p [ i + 1 ] [ j − 1 ] dp[i][j] = dp[i-1][j-1]+dp[i+1][j-1] dp[i][j]=dp[i1][j1]+dp[i+1][j1]。即:第 i 个点 j 次的方案总数等于前后两个点 j-1 次的方案数总和。

#include <bits/stdc++.h>
using namespace std;

const int N = 35;
int n, m, dp[N][N]; // dp[i][j]表示(从1号开始)经过 j 次传球后,球在i号手里的方案总数 dp[i][j] = dp[i-1][j-1]+dp[i+1][j-1]

int main()
{
    scanf("%d %d", &n, &m);
    memset(dp, 0, sizeof(dp));
    dp[1][0] = 1; // 从1号开始,经过0次传球后,球在1号手里的方案总数。只有1种,就是不传

    for(int j = 1; j <= m; j++)
        for(int i = 1; i <= n; i++)
        {
            int pre, nxt;
            // 处理前后两个点的坐标边界
            i == 1 ? pre = n : pre = i-1;
            i == n ? nxt = 1 : nxt = i+1;

            dp[i][j] = dp[pre][j-1] + dp[nxt][j-1];  // 核心语句第i个点j次的方案总数等于前后两个点j-1次的方案数总和
        }

    printf("%d\n", dp[1][m]);
    return 0;
}
解法二、深搜(回溯+记忆化搜索)

这道题也可以采用深搜dfs来完成。但是一定要加上记忆化搜索,否则会Time limit。

#include <bits/stdc++.h>
using namespace std;

const int N = 35;
int n, m, ans, f[N][N]; // f[i][j]表示(从1号开始)经过 j 次传球后,球在i号手里的方案总数

// (回溯型)深搜(+记忆化搜索)
int dfs(int i, int j)  // i表示当前在i#手里,j表示经过了j次传球
{
    if(f[i][j] != -1)  return f[i][j];  // (记忆化搜索)如果已经计算过,则直接返回

    if(j == m)
    {
        if(i == 1)  return 1;   // 处理边界:当传了m次时,如果正好在1号,则返回1,表示这是一个有效的方案数
        else  return 0;         // 否则,返回0
    }

    int pre, nxt;
    // 处理前后两个点的坐标边界
    i == 1 ? pre = n : pre = i-1;
    i == n ? nxt = 1 : nxt = i+1;

    f[i][j] = dfs(pre, j+1) + dfs(nxt, j+1); // 回溯。f[i][j]为向两边继续传球能成功成功的方案数总和

    return f[i][j];
}

int main()
{
    scanf("%d %d", &n, &m);
    memset(f, -1, sizeof(f));   
    
    printf("%d\n", dfs(1, 0)); // dfs的初始状态为:球在1号手里,此时0次传球
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值