【一文学会】变分推断及其求解方法

目录

变分推断(变分推理)

变分

背景描述

变分推断

古典方法

黑盒变分推断(BBVI)

重新参数化技巧

附录


变分推断(变分推理)

变分

首先,什么是变分,对于 f(x) 我们是改变x来求出 f(x) 的极值,这里面的自变量是x;变分就是,通过改变 f(x) 来求出 F(f(x)) 的极值,这里的自变量是 f(x)。所以,简单来说,变分就是将我们常见的函数的自变量改成一个函数的形式。

 

背景描述

先说我们在考虑什么问题:

1,我们拥有两部分输入:数据X,模型P(X,Z) 专家利用他们的知识,给出合理的模型假设P(X,Z) ,其中包括隐含变量Z和观察值变量X。(注意,隐变量Z在通常情况下不止一个,并且相互间存在依赖关系,这也使得问题难以求解)我们认为,观察值是从已知的隐含变量组成的结构中生成出来的(这就是生成模型)。以高斯混合模型举例,我们有2个相互独立的高斯分布,分别从中生成很多数据点,这些数据点混合在一起,组成了一个数据集。切换角度,单从每一个数据点出发,考虑它是如何被生成的呢?生成过程分两步,第一步,从2个类中选一个,然后,再根据这个类对应的高斯分布,生成了这个点在空间中的位置。隐含变量有两个,第一个是2个高斯分布的参数\ left(\ mu,\ sigma \ right),第二个是每个点属于哪个高斯分布\ PI\ left(\ mu,\ sigma \ right)\ PI共同组成隐含变量Z。

2,后验概率P(Z|X) 是说,基于我们现有的数据集合X,推断隐含变量的分布情况。高斯混合模型为例,就是求每个高斯分布的参数\ left(\ mu,\ sigma \ right)和每个数据点所属各个分布的概率\ PI。根据贝叶斯公式,P(Z|X) = P(X,Z) / P(X)。我们根据专家提供的生成模型,可知 P(X,Z) 部分(可以写出表达式并且方便优化),但是边缘概率P(X) ,是不能求得的,因为当Z连续时,边缘概率需要对所有可能的Z求积分,难求;当Z离散时,计算复杂性随着X的增加而指数增长。

3,我们需要构造Q(Z; \西塔),并且不断更新\西塔,使得Q(Z; \西塔)更接近P(Z|X) 。首先注意,Q(Z; \西塔)的表达,意思是Z是变量,\西塔是Z的概率分布Q的参数。所以在构造Q的时候也分两步,第一,概率分布的选择;第二,参数的选择。第一步,我们在选择Q的概率分布时,通常会直观选择P可能的概率分布,这样能够更好地保证Q和P的相似程度。例如高斯混合模型中,原始假设P服从高斯分布,则构造的Q依然服从高斯分布。之后,我们通过改变\西塔,使得Q不断逼近P。

4,优化问题的求解思路。优化目标很明确,减小KL散度的值即可。然而,KL的表达式中依然有一部分不可求的后验概率,这就是为什么转头去求ELBO的原因。利用下面的等式(见后),ELBO中只包括联合概率P(X,Z)和Q(Z; \西塔),从而摆脱后验概率。给定数据集后,最小化KL等价于最大化ELBO,因此ELBO的最大化过程结束时,对应获得的Q(Z; \西塔^ *),就成为了我们的最后输出。

 

变分推断

现在进入正题,我们对一组数据X = \ {x_ {1},x_ {2},... x_ {N} \}P(X)表示模型生成数据的真实分布。机器学习中最常见的问题,就是求后验概率P(Z|X) ,这里的Z你可以认为是模型的响应变量,也可以说成隐变量。然而这个后验分布通常是复杂难求的,于是我们就考虑用一个相对简单的分布Q来对后验分布P近似。

我们从PRML上拿下一张经典的图,假设真实分布P用绿色曲线表示,现在我们希望用一组简单的Q不断逼近P,最终达到图d中的效果,这就是变分推断(VI)所做的事。如何去衡量Q与P之间的近似程度呢?VI中采用的衡量指标是KL散度。

接下来我们对P(X) 的做一些处理:

1,由条件概率公式:

2,两边取对数,并在等式右边引入Q(Z) 后:

3,在Q(Z) 下对上式取期望,Q(Z) 即为我们用来近似的分布:

4,等式左端P(X) 与Z无关,Q(Z) 对Z的积分为1;等式右端简单展开,得到:

经过上述处理,我们看看得到了什么:我们将左式化为ELBO(Evidence Lower Bound Objective)和KL 距离的和。我们不知道样本X的真实分布,但是客观真理是不会改变的,所以P(X) 和lnP(X) 都是未知的常量。等式的右端,ELBO是一个泛函,是Q的函数,由于KL距离是非负的,所以ELBO的上界就是lnP(X) 。我们的目标是最小化KL距离,但其中P(Z|X) 是难以得知的,但式中KL距离和ELBO是此消彼长的关系,这等价于最大化ELBO。当然,一次性就找出ELBO中最佳的Q是不现实的,相反是不断的调整这个分布的参数,使得最后收敛到目标后验概率上。

因此,我们的目标变为最大化ELBO:

                            \ mathop {argmax} \ limits_Q \,\,\,\ int Q(Z)ln(P(X,Z))dZ- \ int Q(Z)ln(Q(Z))dZ

框架给出来了,那么如何求解上述式子呢,我们这里给出三种解法:

  • 古典方法(mean-field)
  • 黑盒变分推断(BBVI)
  • 重新参数化技巧

 

古典方法

                              \ mathop {argmax} \ limits_Q \,\,\,\ int Q(Z)ln(P(X,Z))dZ- \ int Q(Z)ln(Q(Z))dZ

变分推断的核心思想就是在关于Q的有约束的分布簇上最大化L(Q)。一个非常常用的变分学习的方法是加入一些限制使得Q是一个因子分布(也就平均场均值场方法) 。

平均场(mean-field)

用电子来举例,每个电子受到其他电子的库仑相互作用,我们将所有其他电子对该电子的相互作用合并为一个有效场。利用有效场取代电子之间的库仑相互作用之后,每一个电子在一个有效场中运动,电子与电子之间的运动是独立的。同样的思想用在Q的假设上,变分分布Q(Z)可以通过参数和潜在变量的划分因式分解,比如将Z划分为Z1 ...... ZM。

                                                  Q(Z)= \ prod \ limits_i ^ MQ(Z_i)

代入到ELBO中:

                               \ large \ int \ prod \ limits_i ^ MQ(Z_i)ln(P(X,Z))dZ- \ int \ prod \ limits_i ^ MQ(Z_i)\ sum_ {i} ^ {M} ln(Q(Z_i) )DZ

对第一项进行简化,

\ large \ begin {align *} \ int \ prod \ limits_i ^ MQ(Z_i)ln(P(X,Z))dZ&= \ int \ limits_ {Z_1} \ int \ limits_ {Z_2} ... \ int \ limits_ {Z_M} \ prod \ limits_ {i = 1} ^ MQ(Z_i)ln(P(X,Z))dZ_1dZ_2 ... dZ_M \\&= \ int \ limits_ {Z_j} Q(Z_j)\ left (\ int \ limits_ {Z_1} ... \ int \ limits_ {Z_ {i \ neq j}} \ int \ limits_ {Z_M} \ prod \ limits_ {i = 1} ^ MQ(Z_i)ln(P(X ,Z))dZ_1 ... dZ_ {i \ neq j} dZ_M \ right)\\&= \ int \ limits_ {Z_j} Q(Z_j)\ left(E _ {\ prod _ {i \ neq j} Q( Z_i)} \ left [ln(P(X,Z))\ right] \ right)\ end {align *}

既然Q(Z_i)是独立的,那么就可以将积分式展开,同时Q(Z_j)的积分项提出来,这便是前两行所表达的。到此为止,我们是不是可以将简化的这一项看成LN(P(X,Z))E _ {\ prod _ {i \ neq j} Q(Z_i)} \ left [ln(P(X,Z))\ right]下的期望?所以我们可以将右端再简化为第三行的形式。

对第二项进行简化,

\ large \ begin {align *} \ int \ prod \ limits_i ^ MQ(Z_i)\ sum_ {i} ^ {M} ln(Q(Z_i))dZ&= \ int \ limits_ {Z_1} \ int \ limits_ { Z_2} ... \ int \ limits_ {Z_M} \ prod \ limits_ {i = 1} ^ MQ(Z_i)\ sum_ {i} ^ {M} ln(Q(Z_i))dZ_1dZ_2 ... dZ_M \\& = \ int \ limits_ {Z_1} ... \ int \ limits_ {Z_ {i \ neq j}} \ int \ limits_ {Z_M} \ prod \ limits_ {i = 1} ^ MQ(Z_i)\ left(ln( Q(Z_1))+ ln(Q(Z_2))+ ... + ln(Q(Z_M))\ right)dZ_1 ... dZ_ {i \ neq j} dZ_M \\&= \ int_ {Z_1} Q (Z_1)ln(Q(Z_1))dZ_1 + \ int_ {Z_2} Q(Z_2)ln(Q(Z_2))dZ_2 + ... + \ int_ {Z_1} Q(Z_M)ln(Q(Z_M))dZ_M \\&= \ sum \ limits_ {i = 1} ^ M \ left(\ int_ {Z_i} Q(Z_i)ln(Q(Z_i))dZ_i \ right)\ end {align *}

第二项的简化是怎么做的呢,将式子展开得到第二行,再展开分别进行积分,含LN(Q(Z_1))的积分项可以将其他隐变量积掉,从而简化为第三行的形式。

合并简化后的两项,也就是将ELBO重新写为:

                           \ large \ int \ limits_ {Z_j} Q(Z_j)\ left(E _ {\ prod _ {i \ neq j} Q(Z_i)} \ left [ln(P(X,Z))\ right] \ right) -  \ sum \ limits_ {i = 1} ^ M \ left(\ int_ {Z_i} Q(Z_i)ln(Q(Z_i))dZ_i \ right)

我们仔细端详一下这个式子,因为Q(Z)的各个成分是独立的,所以只看Q(Zj)的时候,第二项的Q的其他成分可以看成常量,不影响计算。而第一项中,再引入一个脑洞:

                                \ LARGE E _ {\ prod _ {i \ neq j} Q(Z_i)} \ left [ln(P(X,Z))\ right] = ln(\ mathop {P} ^ \ sim(X,Z))

为什么可以将这项期望标记成这样呢,我会在最后给出它简单的推理,不过现在有了这式后,我们又可以把ELBO重写了:

                             \ large \ begin {align *} ELBO&= \ int_ {Z_j} Q(Z_j)ln(\ mathop {P} ^ \ sim(X,Z))dZ_i- \ int_ {Z_j} Q(Z_j)ln(Q (Z_j))dZ_j + Const \\&= -KL \ left(Q(Z_j)|| \ mathop {P} ^ \ sim(X,Z)\ right)+ Const \ end {align *}

我们将ELBO重写通过将Q(Zj) 的成分展现出来,惊讶的发现这就是一个KL距离啊。固定其他Q(Zi) ,改变Q(Zj),如果我们想最大化ELBO,那不就是要最小化这个KL距离嘛!从变分推断的角度来说,我们就是要用这个复杂的期望去近似Q(Zj) 。所以,我们的核心部分就出来了。

                             \ LARGE E _ {\ prod _ {i \ neq j} Q(Z_i)} \ left [ln(P(X,Z))\ right] = ln(Q ^ *(Z_j))

OK,最后简述一下优化步骤:

如图所示,固定Q(Zj),在\ small \ prod _ {i \ neq j} Q(Z_i)(除了Q(Zj) 以外的)上,用 ln(P(X,Z)) 去更新Q(Zj)

\ small \ left \ {\ begin {align}&ln(Q ^ *(Z_1))= \ int ... \ int ln(P(X,Z))Q(Z_2)... Q(Z_M)dZ_2 ... dZ_M&\ nonumber \\&ln(Q ^ *(Z_2))= \ int ... \ int ln(P(X,Z))Q ^ *(Z_1)... Q(Z_M)dZ_1 ... dZ_M \ nonumber \\&... \ nonumber \\&ln(Q ^ *(Z_M))= \ int ... \ int ln(P(X,Z))Q ^ *(Z_1)。 ..Q ^ *(Z_ {M-1})dZ_1 ... dZ_ {M-1} \ nonumber \ end {align} \ right。

经过多次算法迭代,lnQ收敛于固定值,从而得到最大ELBO,进而确定所需KL散度与Q分布。

方法研究补充:条件mean-field就意味着断开了隐变量Z间的联系,也有一些工作来减少这部分gap,如auxiliary variableshierarchical variational models (HVMs)。大体都是增加辅助变量,比如说还是先假设mean-field,但把变分参数 \ THETA 看成变量,在之上加上新的先验Q(\峰; \拉姆达)。 

 

黑盒变分推断(BBVI)

                              \ mathop {argmax} \ limits_Q \,\,\,\ int Q(Z)ln(P(X,Z))dZ- \ int Q(Z)ln(Q(Z))dZ

假设Q的参数为\ THETA,对\ THETA求导,得到∇梯度:

                                   \begin{align*}\bigtriangledown ELBO & =\bigtriangledown\left ( \int Q(Z,\Theta ) ln\frac{P(X,Z)}{Q(Z,\Theta )}dZ\right )\\ & =\int \left (\bigtriangledown Q(Z,\Theta ) ln\frac{P(X,Z)}{Q(Z,\Theta )}\right )dZ\end{align*}

我会在附录里证明这个式子的等价。

大牛们开了脑洞,把这个式子变为一个期望方程,期望方程长这样:

于是这个式子变为了:

                                 \large \begin{align*}\bigtriangledown ELBO & =\int \left ( \frac{\bigtriangledown Q(Z,\Theta )}{Q(Z,\Theta )} Q(Z,\Theta )ln\frac{P(X,Z)}{Q(Z,\Theta )}\right )dZ\\ & =\int \left (Q(Z,\Theta )\, \bigtriangledown lnQ(Z,\Theta ) ln\frac{P(X,Z)}{Q(Z,\Theta )}\right )dZ\end{align*}

其中Q(Z,\Theta )扮演了p(x)的地位。

于是∇ELBO变成一个求取期望的过程。实际工程中,解析求解该过程是很难的;不过既然是求期望,那么我们随机采样的话就能估计出一个期望值。期望看做加权平均,换到蒙特卡洛方法,那么就是根据Q(Z,\Theta )的概率来进行采样,取出S个Zs值后求平均即为期望。那么有:

                                \large \begin{align*}\bigtriangledown ELBO & =\frac{1}{S} \sum_{s=1}^{S}\left (\bigtriangledown lnQ(Z,\Theta ) ln\frac{P(X,Z)}{Q(Z,\Theta )}\right )\end{align*}

然后就是采用梯度下降法了,依然是先求解i系列变量,固定其他系列变量的过程:

                                   \large \Theta _{i}^{t+1}=\Theta _{i}^{t}+\mu \bigtriangledown _{\Theta _{i}}ELBO

为了求解过程快速收敛、稳定,可以使用ada下降法等方法。

至于先验信息是怎么使用的。例如我们把w,b看做Z,那么改写为p(x|w,b)=p(X|Z),然后乘以p(Z)得到p(X,Z)代入求解式中。

方法研究补充:该方法直接后果是variance太大,从而导致收敛极慢。目前已有工作Rao-BlackwellizationO-BBVI

 

reparameterization tricks

                                \mathop{argmax}\limits_Q\, \, \, \int Q(Z)ln(P(X,Z))dZ-\int Q(Z)ln(Q(Z))dZ

首先,我们说说什么是重新参数化技巧,其主题思想较为简单,如果我们能把一个复杂变量用一个标准变量来表示,比如  \large z=f(\varepsilon ) ,其中\epsilon\sim\mathcal{N}(0,1),那么我们就可以用这个变量取代z。举个例子,假如q (z;θ)是个复杂分布\large N(\mu ,RR^\top ),现在我们想将z再参数化,用q(ε)去表示q(z;θ),即\epsilon\sim\mathcal{N}(0,1),用一个one-liners(简单理解为一行变换)表示从ε到z的联系,令f(ε)为μ+Rε。

这样做会带来什么,假如我们要依据Q(z;θ) 采样,那么现在就可以根据Q(ε) 采样,用f(ε;θ)进行代替。这样做的好处在哪? 我们从Q(z;θ)中采样,然后再利用采样处的梯度修正Q,这样两次的误差就会叠加,这也是用黑盒变分推断方差大的原因。但做了这个重新参数化,我们只需要从一个分布非常稳定的random seed中采样,比如N(0,1)所以noise小得多。

好,现在我们假设有\large Q(f _\Theta(\varepsilon ))=Q (z;\Theta),ε称为一个random seed,\large f_\Theta是一个被参数化的光滑函数族,比如一个DNN。有了这个技术,我们便有:

                                         \large \int g(z)Q(z;\Theta )dz = E_\varepsilon \left ( g(f_\Theta (\varepsilon )) \right )

上式的证明会在附录中给出,接下来对θ求梯度便有:

                             \large \begin{align*} \bigtriangledown _\Theta E_{Q(z;\Theta )} \left ( g(z) \right )=\bigtriangledown _\Theta \int g(z)Q(z;\Theta )dz=&E_\varepsilon \left (\bigtriangledown _\Theta g(f_\Theta (\varepsilon )) \right )\\ = & E_\varepsilon \left ( g^{'} (f_\Theta (\varepsilon ))\bigtriangledown _\Theta f_\Theta (\varepsilon ) \right )\end{align*}

如果它是DNN决定的,就可以反向传播。对\epsilon采样(\epsilon\sim\mathcal{N}(0,1)),方差就小了很多。回到刚才的例子,我们假设Z满足的分布是一个正态分布,它的均值和方差由两个DNN算出来,那么我们就可以很简单的得到\large f _\Theta(\varepsilon )=\mu _\Theta+\varepsilon R_\Theta,于是我们便可以对参数进行优化\large \bigtriangledown _\Theta f _\Theta(\varepsilon )

通过蒙特卡洛积分计算期望,得到梯度的无偏估计量

                                 \大E_ \ varepsilon \ left(\ bigtriangledown _ \ Theta g(f_ \ Theta(\ varepsilon))\ right)= \ frac {1} {S} \ sum \ limits_ {s = 1} ^ S \ bigtriangledown _ \ Theta g(f_ \ Theta(\ varepsilon ^ {\ left(s \ right)})),\ varepsilon ^ {\ left(s \ right)} \ sim q(\ varepsilon)

这里面所用到的假设很简单:

1,连续随机变量z和一个已知的单行变换

2,较为容易的从base distribution或者random seed中生成样本ε

3,可微函数f

哪些对\大Q(Z; \ Theta)我们可以用这样的变换呢?

1,易处理的逆CDF

在这种情况下,变换\大f_ \ Theta设为\大Q(Z; \ Theta)的逆CDF。如:指数(Exponential),柯西(Cauchy),逻辑(Logistic),瑞利(Rayleigh),帕累托(Pareto),威布尔(Weibull),倒数(Reciprocal),贡波茨(Gompertz),甘伯尔(Gumbel)和埃尔朗(Erlang)分布。

2,“location-scale”式分布

类似高斯分布的例子,选取标准分布ε作为辅助变量(此时location= 0,scale= 1),于是\ large f_ \ Theta \ left(\ varepsilon \ right)= location + scale * \ varepsilon 。同样的有:拉普拉斯(Laplace),椭圆(Elliptical),学生t(Student’s t),逻辑(Logistic),均匀(Uniform),三角形(Triangular)和高斯(Gaussian)分布。

3,组合

这是将随机变量表示为辅助变量的不同变换,比如说将对数正态表示为正态分布变量的幂指数。如:Log-Normal(对数正态分布,正态分布变量的求幂),Gamma(伽马,指数分布变量的和),Dirichlet(狄利克雷,卡方变量的加权和),贝塔,卡方,和F分布。

我们这里给出常见的转换。

最后,我们再来看看这是如何运用到ELBO中的

\大ELBO(\ Theta)= E_ \ varepsilon \ left(ln(P(X,f_ \ Theta(\ varepsilon))) -  ln(Q_ \ Theta(f_ \ Theta(\ varepsilon)))\ right)

\ large \ bigtriangledown _ \ Theta ELBO(\ Theta)= E_ \ varepsilon \ left [\ bigtriangledown _ \ Theta \ left(ln(P(X,f_ \ Theta(\ varepsilon))) -  ln(Q_ \ Theta(f_) \ Theta(\ varepsilon)))\ right)\ right]

方法研究补充:已被证明可更好解决variance问题,缺陷是无法处理离散分布,目前已有Gumbel-Softmax[1] [2]可以很好解决这个问题,不过能变换的分布有限,但也有normalizing flows (NFs)来处理了,简单说就是做多层函数变换(z = f_k \ circ \ cdots \ circ f_1(\ epsilon)),具体可参阅文章。

 

附录

证明一:

\ large E _ {\ prod _ {i \ neq j} Q(Z_i)} \ left [ln(P(X,Z))\ right] = ln \,exp \ left \ {E _ {\ prod _ {i \ neq j} Q(Z_i)} \ left [ln(P(X,Z))\ right] \ right \} = ln(\ mathop {P} ^ \ sim(X,Z))

可见,在面对非正态分布时,计算量很大。

证明二:

\ begin {align *} \ bigtriangledown ELBO&= \ bigtriangledown \ left(\ int Q(Z,\ Theta)ln \ frac {P(X,Z)} {Q(Z,\ Theta)} dZ \ right)\ \&= \ int \ left(\ bigtriangledown Q(Z,\ Theta)ln \ frac {P(X,Z)} {Q(Z,\ Theta)} \ right)dZ + \ int \ left(Q(Z) ,\ Theta)\ bigtriangledown ln \ frac {P(X,Z)} {Q(Z,\ Theta)} \ right)dZ \ end {align *}

\ begin {align *} \ int \ left(Q(Z,\ Theta)\ bigtriangledown ln \ frac {P(X,Z)} {Q(Z,\ Theta)} \ right)dZ&= \ int \ left (Q(Z,\ Theta)\ bigtriangledown lnP(X,Z)-Q(Z,\ Theta)\ frac {\ bigtriangledown Q(Z,\ Theta)} {Q(Z,\ Theta)} \ right)dZ \\&= 0- \ bigtriangledown \ int Q(Z,\ Theta)dZ \\&=  -  \ bigtriangledown 1 \\&= 0 \ end {align *}

证明三:

\ large \ begin {align *} \ bigtriangledown _ \ Theta E_ {Q(z; \ Theta)} \ left(g(z)\ right)&= \ bigtriangledown _ \ Theta \ int g(z)Q(z; \ theta)dz \\&= \ bigtriangledown _ \ Theta \ int g(z)Q(\ varepsilon)d \ varepsilon \\&= \ bigtriangledown _ \ Theta \ int g(f_ \ Theta(\ varepsilon))Q( \ varepsilon)d \ varepsilon \\&= \ bigtriangledown _ \ Theta E_ \ varepsilon \ left(g(f_ \ Theta(\ varepsilon))\ right)\\&= E_ \ varepsilon \ left(\ bigtriangledown _ \ Theta g (f_ \ Theta(\ varepsilon))\ right)\\ \ end {align *}

 

我是小明,如果对文章内容或者其他想一起探讨的,欢迎前来。

 

 

本篇文章参考以下:

https://blog.csdn.net/lpsl1882/article/details/74018284

https://www.cnblogs.com/yifdu25/p/8181185.html

http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

https://arxiv.org/pdf/1312.6114.pdf

https://www.zhihu.com/question/41765860/answer/331070683

https://gabrielhuang.gitbooks.io/machine-learning/reparametrization-trick.html

https://www.zhihu.com/question/31032863

  • 28
    点赞
  • 176
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
Eclipse是一个开放源代码的集成开发环境(IDE),可用于Java开发,但也可以用于其他编程语言的开发。在本文中,我将向你展示如何使用Eclipse进行Java开发。 1. 下载Eclipse 首先,你需要从Eclipse官方网站下载Eclipse IDE。下载页面上将提供几个不同的版本,包括Eclipse IDE for Java Developers、Eclipse IDE for JavaScript and Web Developers,以及Eclipse IDE for C/C++ Developers等。选择适合你的版本,然后按照安装向导进行安装。 2. 创建Java项目 一旦你安装了Eclipse,你可以启动它并创建一个新的Java项目。选择“File”->“New”->“Java Project”,然后按照向导创建一个新的Java项目。在创建项目时,你需要指定项目名称、项目类型以及JRE版本等信息。 3. 创建Java类 一旦你创建了一个Java项目,你就可以创建一个Java类。选择你的Java项目,在“src”文件夹上右键单击,然后选择“New”->“Class”。输入类名和选择要继承的类(如果有的话),然后点击“Finish”。 4. 编写Java代码 现在你已经创建了一个Java类,可以开始编写Java代码了。在Eclipse的编辑器中,你可以输入Java代码并保存它。当你保存Java文件时,Eclipse自动编译你的代码,并在Problems视图中显示任何编译错误。 5. 运行Java程序 一旦你编写了Java代码并保存了它,你可以运行Java程序。右键单击Java文件,然后选择“Run As”->“Java Application”。如果一切顺利,你的Java程序将在控制台中输出结果。 6. 调试Java程序 如果你的Java程序出现了错误或不按预期运行,你可以使用Eclipse的调试器来调试它。在Eclipse的编辑器中,你可以设置断点并启动调试器。当程序执行到断点时,调试器暂停程序并允许你检查变量、运行代码等。 7. 导入外部JAR包 有时,你可能需要使用外部JAR包来完成你的Java项目。在Eclipse中,你可以简单地将外部JAR包导入到你的项目中。右键单击Java项目,然后选择“Build Path”->“Configure Build Path”。在“Libraries”选项卡上,你可以添加外部JAR包。 总结 在本文中,我们介绍了如何使用Eclipse进行Java开发。我们学习了如何创建Java项目、创建Java类、编写Java代码、运行Java程序、调试Java程序以及导入外部JAR包。Eclipse具有强大的功能,可以大大提高Java开发的效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值