Hashmap概述
Hashmap实现了map接口,以key-value的形式存在。在Hashmap,key-value被当作一个整体存在。系统根据hash算法来计算存储key-value的存储位置。Hash散列将一个任意的长度通过某种(hash函数算法)转换成一个固定值。通过Hash出来的值,然后通过值定位到map,存入value。
构造函数
讲构造函数前先看下几个重要的定义
初始容量:static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
加载因子:static final float DEFAULT_LOAD_FACTOR = 0.75f;
链表长度到9,转为红黑树:static final int TREEIFY_THRESHOLD = 8;
树大小为6,转为链表:static final int UNTREEIFY_THRESHOLD = 6;
记录集合被修改的次数:transient int modCount;
容量表示哈希中桶的数量,初始容量是创建哈希表时的容量。加载因子是哈希表在其自动增长之前可以达到多满的尺度,衡量着一个散列表的空间的使用程度。负载因子越大表示散列表的装填程度越高。对于使用链表法的散列表来说,查找一个元素的时间复杂度是O(1+n),因此负载因子越大,对空间的利用程度越高,但是查找所花时间越大。
默认无参构造:
public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; }
指定容量构造:
public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); }
指定容量和加载因子构造:
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
//初始化容量不能大于最大容量,最大容量为2^30
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//加载因子不能小于0
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
//Hashmap的底层实现还是数组
this.threshold = tableSizeFor(initialCapacity);
}
Hashmap的数据结构
散列表这种数据结构本质上仍是数组,然后数组元素为链表。
Map中的entry
entry是Map声明的一个内部接口。此接口为泛型,定义为Entry<K,V>,表示Map中的一个实体<key,value>,接口中有getKey()和getValue()方法。Map中entrySet()方法,返回一个实现Map.Entry接口的集合,集合中每个对象都是一个key-value
哈希桶数组
transient Node<K,V>[] table;
这是一个非常重要的字段。Node是HashMap的内部类,实现了entry接口,本质是key-value
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
确定Hash桶数组的索引位置
static final int hash(Object key) {
int h;
//如果key不是null,那么就是获得key的hashcode后,>>>16。增大hash值,减少碰撞
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
i = (table.length - 1) & hash;//这一步是在后面添加元素putVal()方法中进行位置的确定
- 获得key的hashcode
- 再>>>16
- 取模运算:(n-1)&hash
为了让数组元素分布均匀,一般采用取模:hash%length,但是取模操作对计算机消耗很大,所以采用(n-1)&hash。 HashMap 底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当 length 总是2的n次方时,hash & (length-1)运算等价于对 length 取模,也就是 hash%length,但是&比%具有更高的效率。比如 n % 32 = n & (32 -1)。
HashMap 的容量为什么是 2 的幂次方
SUN大师们发现, “当容量一定是2^n时,存在 h & (length - 1) == h % length”,并且这种 按位运算特别快,所以,容量为 n 的幂次方,可以提高运算速度
HashMap中的put方法
在JDK8中,HashMap的实现采用了新的方式。之前采用位桶+链表的形式,即我们常提及的散列表,现在采用了位桶+链表/红黑树的形式。
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
- 判断键值对数组 table 是否为空或为null,否则执行resize()进行扩容;
- 根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
- 判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
- 判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
- 遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
- 插入成功后,判断实际存在的键值对数量size是否超过了最大容量threshold,如果超过,进行扩容。
- 如果新插入的key不存在,则返回null,如果新插入的key存在,则返回原key对应的value值(注意新插入的value会覆盖原value值
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果为空表,则初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
//如果计算出的位置没有元素,则直接插入
tab[i] = newNode(hash, key, value, null);
else {
//这时候开始用到链表或红黑树
//e用来看待插入的元素是不是已经有了,有了就替换
Node<K,V> e; K k;
//p是存储在当前位置的元素
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
HashMap中的get方法
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//根据key计算的索引检查第一个索引
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
//不是第一个节点
if ((e = first.next) != null) {
if (first instanceof TreeNode)//遍历树查找元素
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
//遍历链表查找元素
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}