文正·高等数学每日一题(2)·一道“小学生”面积题

        众所周知,小学生题包罗万象,做不来的题都叫小学生题。这就来了,之前在网上看到一个求阴影面积的“小学生”题,如下:


题:


 

答:

        这类圆和矩形重叠的题很典型,自以为通过割补、重叠等操作可以像小学生一样求出面积,但是尝试后就会发现,貌似总是缺了一点东西。对,正常的小学生题应该是左下角的曲边三角也是阴影,那样就可以通过割补法之类的凑成规则的图形求解。因此这道题的核心本质就是求左下角的小曲边三角形面积。类似的还有以下这道题,本质上是一样的。

 话不多说,开始。抽象出以下模型,假设圆半径为1。

 可以看到

S_{APE}=S_{\Delta ABC}-S_{BEC}-S_{PEC}

因此最主要的就是求弓形面积 S_{PEC},而其关键便是求其所对的圆心角。

方法一:勾股定理

        做以下辅助线:

PH=x,则根据相似三角形有HC=2x, HO=2x-1,在\Delta PHO中,应用勾股定理,得到:

x^2+(2x-1)^2=1

故得到x=\frac{4}{5},则有PH=\dfrac{4}{5}HO=\dfrac{3}{5},根据三角函数则有\angle HOP=\arctan{\frac{4}{3}},则\angle POC=\pi - \arctan{\frac{4}{3}},则有:

S_{PEC}=S_{OPEC}-S_{\Delta OPC}=\frac{\pi-\arctan{\frac{4}{3}}}{2\pi}\times \pi-\frac{1}{2}\times 1\times \frac{4}{5}=\frac{\pi}{2}-\frac{\arctan{\frac{4}{3}}}{2}-\frac{2}{5}

S_{BEC}=1-\frac{1}{4}\times \pi\times 1^2=1-\frac{\pi}{4}

则有

\begin{aligned} S_{APE}&=S_{\Delta ABC}-S_{BEC}-S_{PEC}\\ &=\frac{1}{2}\times 1\times 2-(1-\frac{\pi}{4})-(\frac{\pi}{2}-\frac{\arctan{\frac{4}{3}}}{2}-\frac{2}{5})\\ &=\frac{2}{5}-\frac{\pi}{4}+\frac{\arctan{\frac{4}{3}}}{2}\\ &\approx 0.07825\end{aligned}

 方法二:三角函数

        作以下辅助线

 则有

S_{APE}=S_{\Delta AQE}-S_{PQE}=S_{\Delta AQE}-S_{POE}+S_{\Delta POQ}

关键是求\angle POQ. 记\angle OCQ=\theta=\arctan{\frac{1}{2}},则有\angle OPQ=\theta\angle POQ=\frac{\pi}{2}-2\theta,则有

S_{POE}=\frac{\frac{\pi}{2}-2\theta}{2\pi}\times\pi=\frac{\pi}{4}-\theta

S_{\Delta POQ}=\frac{1}{2}\times PO\times OQ\times \sin{\angle POQ}=\frac{1}{4}\sin{(\frac{\pi}{2}-2\theta)}=\frac{1}{4}\cos{2\theta}

故有

\begin{aligned} S_{APE}&=S_{\Delta AQE}-S_{POE}+S_{\Delta POQ}\\ &=\frac{1}{4}-(\frac{\pi}{4}-\theta)+\frac{1}{4}\cos{2\theta}\\ &=\frac{\cos^2{\theta}}{2}-\frac{\pi}{4}+\theta\\ &=\frac{1}{2(1+\tan^2{\theta})}-\frac{\pi}{4}+\theta\\ &=\frac{1}{2(1+(1/2)^2)}-\frac{\pi}{4}+\arctan{\frac{1}{2}}\\ &=\frac{2}{5}-\frac{\pi}{4}+\arctan{\frac{1}{2}}\\ &\approx 0.07825 \end{aligned}

 方法三:积分

        最直接暴力的方法当然是用微积分了,以A点为原点建立坐标系,关键求交点P坐标。

设P=(x,\frac{x}{2}),根据PO=1,有

(x-1)^2+(\frac{x}{2}-1)^2=1

x=\frac{2}{5},则有面积积分:

\begin{aligned} S_{APE}&=\int_{0}^{2/5}\frac{x}{2}~\mathrm{d}x+\int_{2/5}^{1}1-\sqrt{1-(x-1)^2}~\mathrm{d}x\\ &=\frac{1}{25}+\int_{\arccos{3/5}}^{\pi/2}(1-\sin{\theta})\sin\theta\mathrm{d}\theta\\ &=\frac{1}{25}+\frac{3}{5}-\frac{1}{2}(\frac{\pi}{2}-\arccos{\frac{3}{5}})-\frac{6}{25}\\ &=\frac{2}{5}-\frac{\pi}{4}+\frac{1}{2}\arccos{\frac{3}{5}}\\ &\approx 0.07825 \end{aligned}

 方法四:蒙特卡洛模拟

        若只是求数值解,有一种实验性的方法,即蒙特卡洛方法,对于不规则图形面积求解尤其方便,只需要短短几行代码便可实现。

        其基本思想是:往图形中均匀撒点,那么当撒点数很大时,落在每个区域的点数占比等于面积占比,典型的案例就是求圆周率及Buffon投针实验

 Python代码如下:

import numpy as np
N = 10000000
counts = 0
for i in range(N):
    point = np.random.random(2)
    if not ((point[1] < point[0] / 2) and ((point[0]-1.)**2+(point[1]-1.)**2>1)):
        counts = counts + 1
print("阴影部分面积近似为:", 1- counts / N * 1**2)

        这里由于阴影部分面积比较小,若统计掉在其内的粒子数会较少,相同总粒子数时,误差会较大。因此可以反过来统计掉在区域外的粒子数,求区域外面积,然后作差。上述代码运行结果为0.078257,已经很接近真实面积了。相对误差随总粒子数的变化见下图。通过一些适当加速方法可以提高蒙卡收敛的速度,可以通过更小的粒子数得到误差较小的结果。

        综上所述,该题不可能是小学生题,至少要知道勾股定理及三角函数,应当是高中题较为合适。当然,如果小学已经会Python了,那当我没说。 

基于SSM框架的智能家政保洁预约系统,是一个旨在提高家政保洁服务预约效率和管理水平的平台。该系统通过集成现代信息技术,为家政公司、家政服务人员和消费者提供了一个便捷的在线预约和管理系统。 系统的主要功能包括: 1. **用户管理**:允许消费者注册、登录,并管理他们的个人资料和预约历史。 2. **家政人员管理**:家政服务人员可以注册并更新自己的个人信息、服务类别和服务时间。 3. **服务预约**:消费者可以浏览不同的家政服务选项,选择合适的服务人员,并在线预约服务。 4. **订单管理**:系统支持订单的创建、跟踪和管理,包括订单的确认、完成和评价。 5. **评价系统**:消费者可以在家政服务完成后对服务进行评价,帮助提高服务质量和透明度。 6. **后台管理**:管理员可以管理用户、家政人员信息、服务类别、预约订单以及处理用户反馈。 系统采用Java语言开发,使用MySQL数据库进行数据存储,通过B/S架构实现用户与服务的在线交互。系统设计考虑了不同用户角色的需求,包括管理员、家政服务人员和普通用户,每个角色都有相应的权限和功能。此外,系统还采用了软件组件化、精化体系结构、分离逻辑和数据等方法,以便于未来的系统升级和维护。 智能家政保洁预约系统通过提供一个集中的平台,不仅方便了消费者的预约和管理,也为家政服务人员提供了一个展示和推广自己服务的机会。同时,系统的后台管理功能为家政公司提供了强大的数据支持和决策辅助,有助于提高服务质量和管理效率。该系统的设计与实现,标志着家政保洁服务向现代化和网络化的转型,为管理决策和控制提供保障,是行业发展中的重要里程碑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

按不出色风格

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值