leetcode 37解数独
编写一个程序,通过已填充的空格来解决数独问题。
一个数独的解法需遵循如下规则:
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。
空白格用 '.' 表示。
解题思路,第一想法就是dfs,但是需要一个标记相关行列以及3x3小块的情况,这里采用了 bitset,来进行标记,每次都是选取可能性最小的进行展开,减少出错的可能性。
class Solution {
private:
vector<bitset<9>> row;
vector<bitset<9>> col;
vector<vector<bitset<9>>> cells;
public:
void fillNum(int x,int y,int num,bool flag){
row[x][num]=flag; //row[x] |=(1<<num)
col[y][num]=flag;
cells[x/3][y/3][num]=flag;
}
bitset<9> getPossibleNum(int x,int y){
return ~(row[x]|col[y]|cells[x/3][y/3]);//只有满足行列块都不冲突的情况下,返回对应位 置为1;
}
vector<int> getNext(vector<vector<char>> &board){
int min_count=10;
vector<int> pos;
for(int i=0;i<board.size();i++)
for(int j=0;j<board[0].size();j++){
if(board[i][j]=='.'){
auto bits=getPossibleNum(i,j);
if(bits.count()<min_count){
min_count=bits.count();
pos={i,j};
}
}
}
return pos;
}
bool dfs(vector<vector<char>> &board,int cnt,bool &flag){
if(cnt==0||flag)
return true;
auto next_pos=getNext(board);
auto bits=getPossibleNum(next_pos[0],next_pos[1]);
if(bits.count()==0)
return false;
for(int i=0;i<bits.size();i++){
if(!bits.test(i))
continue;
fillNum(next_pos[0],next_pos[1],i,1);
board[next_pos[0]][next_pos[1]]=i+'1';
if(dfs(board,cnt-1,flag)) //注意结束条件
return true;
board[next_pos[0]][next_pos[1]]='.';
fillNum(next_pos[0],next_pos[1],i,0);
}
return false;
}
void solveSudoku(vector<vector<char>>& board) {
row=vector<bitset<9>>(9,bitset<9>());
col=vector<bitset<9>>(9,bitset<9>());
cells=vector<vector<bitset<9>>>(3,vector<bitset<9>>(3,bitset<9>()));
bool flag=false;
int cnt=0;
for(int i=0;i<board.size();i++)
for(int j=0;j<board[0].size();j++){
if(board[i][j]=='.')
cnt++;
else{
int n=board[i][j]-'1';
row[i][n]=1;
col[j][n]=1;
cells[i/3][j/3][n]=1;
}
}
dfs(board,cnt,flag);
}
};