分工和贸易

一、经济学是科学吗?

经济学不是科学,因为定理不可证伪;比如定理价格和需求成反比,在买豪车这件事上成立;在上学这件事情上不成立。经济学原理总能早到反例,但是不能说定理被证伪了,因为又总是能够通过找到其他影响因素解释通,或者换一个场景还是适用,所以经济学定理是不可证伪的,不是科学定理。

经济学是社会科学,不是自然科学。经济学定理是一套解释性框架,它可以解释部分经济事件,它不可证伪但是他并非不靠谱。因为经济学事件的影响因素太多,很难控制所有的因素不变,只对比一个差异验证定理;另外,经济系统变化很快,学说可能在验证之前,经济系统已经变化了。

判断一个经济学解释性框架是否靠谱,应该通过这个框架符合事实多不多。如果一个解释性框架经常不符合事实,它就会被抛弃,当它不会死,只是凋零。

  1. 所以当一个非自然科学的解释性框架出现反例的时候,不要马上抛弃他,可以多想想是否是有其他因素的影响
  2. 小心确认偏误:如果出现你的理论的反例的时候,一定是你的理论错误了;出现我的理论的反例的时候,可以找出其他原因,即我的反例总能解释。应该给也听听别人的解释。
  3. 相信寻找真理的人;怀疑号称找到真理的人。
  4. 所以我和同事的分歧只是观点不同,很能证明;应该要尽力达成共识。

二、工程师思维和生态思维。

有些模型和比喻有关,比如把经济体比作机器。然后就有了很多优化机器的方式,如果要机器运行的更快,就需要踩油门,于是油门就是印钞票和借钱。这个比喻会限制思维,紧固在工程师思维中。

然而,经济体其实是很复杂的,无形影响因素非常多,无法像机器一样顶层设计和调控,比喻成互联网,一个生态系统更贴切。因为它们都有很多影响因素,都讲究生态平衡之道。目前世界大经济体都是以市场经济为主导可以证明这一点。而且,好的系统应该有抗打击性,自组织性,上层控制和局部自治平衡。显然,互联网比机器是一个更好的系统。

那么,在互联网这个比喻,会影响人们用生态学家的思维来看待经济。比如,让市场自己解决大部分问题,只有在很严重的问题出现时才干预,不如洪水泛滥。

总结,好的比喻可以,给人以启发;不好的比喻会紧固人的思维。比喻是一把双刃剑,正因如此,用好它会有很大的威力。   比喻总是可以找到破绽的,所以交流表用到比喻时候不妨多找几个,比比哪个更贴切。另外,也许举例子会有更好的效果。

三、国家,公司和家庭

为什么经济学家有市场经济更好的共识。也许有壁市场更好的分工协作方式。

国家不是家庭,家庭中每个人都自主的做贡献,不是赤裸裸的金钱关系。那么国家不能用这样的方式,因为社会是个复杂的经济体,分工复杂度极高。想要安排如此复杂的分工,只有两个办法:市场or指令。何其对于的就是国家和公司。

国家不是公司,计划经济在战争时期的美国成功过,但是其本质相比于预测更像是控制。战争时期,你可以通过爱国激励大家,所有东西都缺,急需战备物资所以无需预测,而且指令经济的本质是维护现有的集团利益,不利于创新。所以国家考市场分工,不是公司。

公司不是市场,家庭也不是市场,因为公司和家庭往往是1+1>2的,需要更多配合多过竞争。所以公司做好用指令分工。家庭靠自觉分工。

所以国家,家庭,公司的分工情况是具体问题具体分析。经济学第一句:人会对激励做出反应;宏观经济学第一句:国家不是家庭。

四、市场失灵和政府失灵

东西方的经济学家最大的分歧就是,什么问题应该有政府解决,什么事情应该交给市场解决。

市场失灵。比如公地悲剧,即无主的公地会被滥用导致永久的破坏,它可以通过私有化来解决。但是,有的东西没法通过私有化解决,比如空气排污。比如警察服务。这时候就需要政府出手。。

政府失灵。比如08年的美国次贷危机,在危机爆发之前整个社会的负债率已经非常高,然而政府对市场的干预是:1.限制供给;2.激励需求。这些操作只会导致一件事,房价上涨。这就是政府失灵。

公共选择理论。

08年美国政府的行为很难用经济学解释。公共选择理论认为政府08年的行为不是为了解决市场失灵,而是为了服务特殊利益集团。住房拥有者、投资者、提供贷款的公司,他们形成的利益集团,他们的利益是提高房价。而对立的利益集团是购房消防法者,他们通常没有组织,对价格不如前者敏感,没有利益的代言人。前者和后者给政府的压力是不一样的。所以政府插手可能会让东西越来越贵

判断用市场,还是政府的标准。1.这件事对大家的利益差不多;2.让人们竞争去做太麻烦。满足这两点的事情让政府做。比如自来水供应,大家都需要,而且水源地就几个,竞争很麻烦。再比如道路交通。而类似补贴精英大学,就不合适,因为只有少数人上的了。

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值