说明
关于行人重检测和行人重识别的整个算法框架整理了一份代码,放到了github上。主要是行人重识别部分,方便大家以后在跟进新的算法,发表论文,或算法落地到实际场景中时,该部分代码可直接移植到硬件设备中运行,使用是直接可以把自己的算法添加到models中即可。
代码地址: https://github.com/zhanghlgithub/pytorch-reid.git
本代码完成了行人检测和行人重识别的工作,行人检测使用Retianet作为主干网络,损失函数使用Focal loss,参考论文
行人重识别部分,已经最简化了行人重识别的训练过程,只需将自己读到的最新算法的网络结构,添加到reid/deep-person-reid/torchreid/models目录下,即可训练自己的模型。 参考pytorch-reid库,参考代码。本代码修改了库的部分源码,实现了在摄像头中实时的响应行人重识别的任务。
接下来会单独写一篇博客说明Pytorch-ReID每个文件的作用以及如何修改使用到自己的算法逻辑中,也可以参考上文给出的参考链接。