retianet + pytorch-reid实现了在摄像头中行人重识别的任务

该博客分享了一个基于RetinaNet的行人检测和Pytorch-ReID的行人重识别完整框架,提供了代码仓库链接。通过将新算法模型添加到代码中,可直接进行训练和应用。文章包含流程图、运行环境依赖、脚本使用说明及模型效果展示,展示了模型训练后对行人的聚焦响应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明

关于行人重检测和行人重识别的整个算法框架整理了一份代码,放到了github上。主要是行人重识别部分,方便大家以后在跟进新的算法,发表论文,或算法落地到实际场景中时,该部分代码可直接移植到硬件设备中运行,使用是直接可以把自己的算法添加到models中即可。
代码地址: https://github.com/zhanghlgithub/pytorch-reid.git
本代码完成了行人检测和行人重识别的工作,行人检测使用Retianet作为主干网络,损失函数使用Focal loss,参考论文
行人重识别部分,已经最简化了行人重识别的训练过程,只需将自己读到的最新算法的网络结构,添加到reid/deep-person-reid/torchreid/models目录下,即可训练自己的模型。 参考pytorch-reid库,参考代码。本代码修改了库的部分源码,实现了在摄像头中实时的响应行人重识别的任务。
接下来会单独写一篇博客说明Pytorch-ReID每个文件的作用以及如何修改使用到自己的算法逻辑中,也可以参考上文给出的参考链接。

流程图如下:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值