给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。
public class Solution {
public List<List<String>> partition(String s) {
int len = s.length();
List<List<String>> res = new ArrayList<>();
if (len == 0) {
return res;
}
// Stack 这个类 Java 的文档里推荐写成 Deque<Integer> stack = new ArrayDeque<Integer>();
// 注意:只使用 stack 相关的接口
Deque<String> stack = new ArrayDeque<>();
backtracking(s, 0, len, stack, res);
return res;
}
/**
* @param s
* @param start 起始字符的索引
* @param len 字符串 s 的长度,可以设置为全局变量
* @param path 记录从根结点到叶子结点的路径
* @param res 记录所有的结果
*/
private void backtracking(String s, int start, int len, Deque<String> path, List<List<String>> res) {
if (start == len) {
res.add(new ArrayList<>(path));
return;
}
for (int i = start; i < len; i++) {
// 因为截取字符串是消耗性能的,因此,采用传子串索引的方式判断一个子串是否是回文子串
// 不是的话,剪枝
if (!checkPalindrome(s, start, i)) {
continue;
}
path.addLast(s.substring(start, i + 1));
backtracking(s, i + 1, len, path, res);
path.removeLast();
}
}
/**
* 这一步的时间复杂度是 O(N),因此,可以采用动态规划先把回文子串的结果记录在一个表格里
*
* @param str
* @param left 子串的左边界,可以取到
* @param right 子串的右边界,可以取到
* @return
*/
private boolean checkPalindrome(String str, int left, int right) {
// 严格小于即可
while (left < right) {
if (str.charAt(left) != str.charAt(right)) {
return false;
}
left++;
right--;
}
return true;
}
}