为什么拟合残差能够减少损失?(或者为什么要对弱模型拟合残差得到残差树然后与弱模型线性相加得到较强模型?)

本文探讨了通过比较强模型和弱模型的损失函数来评估模型性能的方法。详细分析了残差树在拟合过程中的作用,指出其值接近使得比更接近于0,从而验证了强模型的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整体思路:比较两者的损失大小
弱模型表示为:在这里插入图片描述;拟合后的残差树:在这里插入图片描述
所以强模型的损失函数:
在这里插入图片描述
弱模型的损失函数:
在这里插入图片描述
其中,在这里插入图片描述
因为残差树在这里插入图片描述的值与在这里插入图片描述值很接近,所以比ri更接近0,即:在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值