解决Ubuntu下,Tensorflow项目的GPU部署和nvidia版本造成的问题

在Ubuntu系统中,使用Tensorflow时遇到GPU驱动和cudnn版本不匹配的问题,表现为cudnn初始化失败。解决方法包括更新nvidia驱动至最新版本和确保cudnn版本与CUDA版本对应。此外,卸载旧驱动可能导致开机循环登录,通过命令行重新安装推荐的驱动可以恢复桌面环境。
摘要由CSDN通过智能技术生成

GPU驱动版和软件版本不对应

报错内容:
totalMemory: 10.91GiB freeMemory: 10.20GiB
tensorflow/core/common_runtime/gpu/gpu_device.cc:1435] Adding visible gpu devices: 0
tensorflow/core/common_runtime/gpu/gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
tensorflow/core/common_runtime/gpu/gpu_device.cc:929] 0
tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 0: N
tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 9868 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0, compute capability: 6.1)

E tensorflow/stream_executor/cuda/cuda_dnn.cc:455] could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
E tensorflow/stream_executor/cuda/cuda_dnn.cc:463] possibly insufficient driver version: 384.130.0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值