1s 512MB
试题描述:
小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆。通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号。为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时同一种花放在一起,且不同种类的花需按标号从小到大的顺序依次摆列。
试编程计算,一共有多少种不同的摆花方案。
输入数据:
第一行包含两个正整数n和m,中间用一个空格隔开。
第二行有n个整数,每两个整数之间用一个空格隔开,依次表示a1、a2、…….an。
输出数据:
一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对1000007取模的结果。
输入输出样例:
2 4 2
3 2
输出样例:
2
样例说明:有2种摆花的方案,分别是(1,1,1,2),(1,1,2,2)。括号里的1和2表示两种花,比如第一个方案是前三个位置摆第一种花,第四个位置摆第二种花。
数据范围:
对于20%数据,有0<n<=8,0<m<=8,0<ai<=8;
对于50%数据,有0<n<=20,0<m<=20,0<ai<=20;
对于100%数据,有0<n<=100,0<m<=100,0<ai<=100。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int mod=1e6+7;
int n,m,a[105];
long long dp[105][105];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
dp[i][0]=1;//key
}
dp[0][0]=1;//
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int t=max(0,j-a[i]);//
for(int k=j;k>=t;k--)
{
dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;
}
}
}
printf("%d\n",dp[n][m]);
return 0;
}