题目:
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
思路:
这道题我们可以用递归来求解,我们首先来看题目中给的例子,由于二叉搜索树的特点是左<根<右,所以根节点的值一直都是中间值,大于左子树的所有节点值,小于右子树的所有节点值,那么我们可以做如下的判断,如果根节点的值大于p和q之间的较大值,说明p和q都在左子树中,那么此时我们就进入根节点的左子节点继续递归,如果根节点小于p和q之间的较小值,说明p和q都在右子树中,那么此时我们就进入根节点的右子节点继续递归,如果都不是,则说明当前根节点就是最小共同父节点,直接返回即可。
代码:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
#二叉搜索树(中序遍历递增)
while root:
if root.val<p.val and root.val <q.val:#祖先在右边
root=root.right
continue
if root.val>p.val and root.val>q.val:#祖先在左边
root=root.left
continue
return root
#递归方法
# class Solution:
# def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
# if not root:
# return None
# if root.val<p.val and root.val <q.val:
# root=self.lowestCommonAncestor(root.right,p,q)
# if root.val>p.val and root.val>q.val:
# root=self.lowestCommonAncestor(root.left,p,q)
# return root